These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 32210237)
1. Metaproteomics characterizes human gut microbiome function in colorectal cancer. Long S; Yang Y; Shen C; Wang Y; Deng A; Qin Q; Qiao L NPJ Biofilms Microbiomes; 2020 Mar; 6(1):14. PubMed ID: 32210237 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of Sample Preservation and Storage Methods for Metaproteomics Analysis of Intestinal Microbiomes. Mordant A; Kleiner M Microbiol Spectr; 2021 Dec; 9(3):e0187721. PubMed ID: 34908431 [TBL] [Abstract][Full Text] [Related]
3. Altered intestinal microbiota associated with colorectal cancer. Zhang H; Chang Y; Zheng Q; Zhang R; Hu C; Jia W Front Med; 2019 Aug; 13(4):461-470. PubMed ID: 31250341 [TBL] [Abstract][Full Text] [Related]
4. Assessing the impact of protein extraction methods for human gut metaproteomics. Zhang X; Li L; Mayne J; Ning Z; Stintzi A; Figeys D J Proteomics; 2018 May; 180():120-127. PubMed ID: 28705725 [TBL] [Abstract][Full Text] [Related]
5. Systematic review: Gut microbiota in fecal samples and detection of colorectal neoplasms. Amitay EL; Krilaviciute A; Brenner H Gut Microbes; 2018 Jul; 9(4):293-307. PubMed ID: 29543545 [TBL] [Abstract][Full Text] [Related]
6. Integrated microbiome and metabolome analysis reveals a novel interplay between commensal bacteria and metabolites in colorectal cancer. Yang Y; Misra BB; Liang L; Bi D; Weng W; Wu W; Cai S; Qin H; Goel A; Li X; Ma Y Theranostics; 2019; 9(14):4101-4114. PubMed ID: 31281534 [No Abstract] [Full Text] [Related]
7. MetaPro-IQ: a universal metaproteomic approach to studying human and mouse gut microbiota. Zhang X; Ning Z; Mayne J; Moore JI; Li J; Butcher J; Deeke SA; Chen R; Chiang CK; Wen M; Mack D; Stintzi A; Figeys D Microbiome; 2016 Jun; 4(1):31. PubMed ID: 27343061 [TBL] [Abstract][Full Text] [Related]
8. Gut Microbiota-Mediated Inflammation and Gut Permeability in Patients with Obesity and Colorectal Cancer. Sánchez-Alcoholado L; Ordóñez R; Otero A; Plaza-Andrade I; Laborda-Illanes A; Medina JA; Ramos-Molina B; Gómez-Millán J; Queipo-Ortuño MI Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32947866 [TBL] [Abstract][Full Text] [Related]
9. Bacterial community structure alterations within the colorectal cancer gut microbiome. Loftus M; Hassouneh SA; Yooseph S BMC Microbiol; 2021 Mar; 21(1):98. PubMed ID: 33789570 [TBL] [Abstract][Full Text] [Related]
10. Deep Metaproteomics Approach for the Study of Human Microbiomes. Zhang X; Chen W; Ning Z; Mayne J; Mack D; Stintzi A; Tian R; Figeys D Anal Chem; 2017 Sep; 89(17):9407-9415. PubMed ID: 28749657 [TBL] [Abstract][Full Text] [Related]
11. Hospitalized Premature Infants Are Colonized by Related Bacterial Strains with Distinct Proteomic Profiles. Brown CT; Xiong W; Olm MR; Thomas BC; Baker R; Firek B; Morowitz MJ; Hettich RL; Banfield JF mBio; 2018 Apr; 9(2):. PubMed ID: 29636439 [TBL] [Abstract][Full Text] [Related]
12. Gut microbial subtypes and clinicopathological value for colorectal cancer. Han S; Zhuang J; Song Y; Wu X; Yu X; Tao Y; Chu J; Qu Z; Wu Y; Han S; Yang X Cancer Med; 2024 Sep; 13(17):e70180. PubMed ID: 39234654 [TBL] [Abstract][Full Text] [Related]
13. The Landscape and Perspectives of the Human Gut Metaproteomics. Sun Z; Ning Z; Figeys D Mol Cell Proteomics; 2024 May; 23(5):100763. PubMed ID: 38608842 [TBL] [Abstract][Full Text] [Related]
14. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nakatsu G; Li X; Zhou H; Sheng J; Wong SH; Wu WK; Ng SC; Tsoi H; Dong Y; Zhang N; He Y; Kang Q; Cao L; Wang K; Zhang J; Liang Q; Yu J; Sung JJ Nat Commun; 2015 Oct; 6():8727. PubMed ID: 26515465 [TBL] [Abstract][Full Text] [Related]
15. Isobaric Labeling Quantitative Metaproteomics for the Study of Gut Microbiome Response to Arsenic. Liu CW; Chi L; Tu P; Xue J; Ru H; Lu K J Proteome Res; 2019 Mar; 18(3):970-981. PubMed ID: 30545218 [TBL] [Abstract][Full Text] [Related]
16. An integrated workflow for enhanced taxonomic and functional coverage of the mouse fecal metaproteome. Nalpas N; Hoyles L; Anselm V; Ganief T; Martinez-Gili L; Grau C; Droste-Borel I; Davidovic L; Altafaj X; Dumas ME; Macek B Gut Microbes; 2021; 13(1):1994836. PubMed ID: 34763597 [TBL] [Abstract][Full Text] [Related]
17. Comparison of human gut microbiota in control subjects and patients with colorectal carcinoma in adenoma: Terminal restriction fragment length polymorphism and next-generation sequencing analyses. Kasai C; Sugimoto K; Moritani I; Tanaka J; Oya Y; Inoue H; Tameda M; Shiraki K; Ito M; Takei Y; Takase K Oncol Rep; 2016 Jan; 35(1):325-33. PubMed ID: 26549775 [TBL] [Abstract][Full Text] [Related]
18. Metaproteomic and Metabolomic Approaches for Characterizing the Gut Microbiome. Peters DL; Wang W; Zhang X; Ning Z; Mayne J; Figeys D Proteomics; 2019 Aug; 19(16):e1800363. PubMed ID: 31321880 [TBL] [Abstract][Full Text] [Related]
19. Quantitative Metaproteomics and Activity-Based Probe Enrichment Reveals Significant Alterations in Protein Expression from a Mouse Model of Inflammatory Bowel Disease. Mayers MD; Moon C; Stupp GS; Su AI; Wolan DW J Proteome Res; 2017 Feb; 16(2):1014-1026. PubMed ID: 28052195 [TBL] [Abstract][Full Text] [Related]
20. Altered Gut Archaea Composition and Interaction With Bacteria Are Associated With Colorectal Cancer. Coker OO; Wu WKK; Wong SH; Sung JJY; Yu J Gastroenterology; 2020 Oct; 159(4):1459-1470.e5. PubMed ID: 32569776 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]