These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32210250)

  • 1. Switchable Multi-Color Solution-Processed QD-laser.
    Matloub S; Amini P; Rostami A
    Sci Rep; 2020 Mar; 10(1):5273. PubMed ID: 32210250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-broadband Optical Gain Engineering in Solution-processed QD-SOA Based on Superimposed Quantum Structure.
    Yousefabad HG; Matloub S; Rostami A
    Sci Rep; 2019 Sep; 9(1):12919. PubMed ID: 31501488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-Wavelength Lasing in Quantum-Dot Plasmonic Lattice Lasers.
    Winkler JM; Ruckriegel MJ; Rojo H; Keitel RC; De Leo E; Rabouw FT; Norris DJ
    ACS Nano; 2020 May; 14(5):5223-5232. PubMed ID: 32159334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-power dual-wavelength lasing in bimodal-sized InGaAs/GaAs quantum dots.
    Zhou Y; Zhang J; Ning Y; Zeng Y; Zhang J; Zhang X; Qin L; Tong C; Liu Y; Wang L
    Opt Express; 2016 Dec; 24(25):29321-29328. PubMed ID: 27958592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloidal-Quantum-Dot Ring Lasers with Active Color Control.
    le Feber B; Prins F; De Leo E; Rabouw FT; Norris DJ
    Nano Lett; 2018 Feb; 18(2):1028-1034. PubMed ID: 29283266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinctive signature of indium gallium nitride quantum dot lasing in microdisk cavities.
    Woolf A; Puchtler T; Aharonovich I; Zhu T; Niu N; Wang D; Oliver R; Hu EL
    Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14042-6. PubMed ID: 25197073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of carrier dynamics in InGaAs/GaAs self-assembled quantum dot lasers.
    Kashiri M; Asgari A
    Appl Opt; 2016 Mar; 55(8):2042-8. PubMed ID: 26974800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity.
    Roh J; Park YS; Lim J; Klimov VI
    Nat Commun; 2020 Jan; 11(1):271. PubMed ID: 31937771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carrier dynamics and lasing behavior of InAs/GaAs quantum dot lasers with short cavity lengths.
    Yao ZH; Wang X; Chen HM; Wang T; Qin L; Liu J; Zhang ZY
    Nanotechnology; 2021 Oct; 33(3):. PubMed ID: 34644680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-speed and high-contrast two-channel all-optical modulator based on solution-processed CdSe/ZnS quantum dots.
    Dortaj H; Faraji M; Matloub S
    Sci Rep; 2022 Jul; 12(1):12778. PubMed ID: 35896801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Nanowire-Based Plasmonic Quantum Dot Laser.
    Ho J; Tatebayashi J; Sergent S; Fong CF; Ota Y; Iwamoto S; Arakawa Y
    Nano Lett; 2016 Apr; 16(4):2845-50. PubMed ID: 27030886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Vertical Multi-Emission Laser with Distributed Bragg Reflector Feedback from CsPbI
    Su X; Pan Y; Gao D; Wang J; Yu H; Chen R; Guan B; Yang X; Wang Y; Wang L
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A solution-processed 1.53 mum quantum dot laser with temperature-invariant emission wavelength.
    Hoogland S; Sukhovatkin V; Howard I; Cauchi S; Levina L; Sargent EH
    Opt Express; 2006 Apr; 14(8):3273-81. PubMed ID: 19516469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplexed energy transfer mechanisms in a dual-function quantum dot for zinc and manganese.
    Ruedas-Rama MJ; Hall EA
    Analyst; 2009 Jan; 134(1):159-69. PubMed ID: 19082188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Important role of surface plasmon coupling with the quantum wells in a surface plasmon enhanced color-converting structure of colloidal quantum dots on quantum wells.
    Wang YT; Wu RN; Ni CC; Lu CC; Cai CJ; Tse WF; Chang WY; Kuo Y; Kiang YW; Yang CC
    Opt Express; 2020 Apr; 28(9):13352-13367. PubMed ID: 32403812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Auger Recombination on Lasing in Heterostructured Quantum Dots with Engineered Core/Shell Interfaces.
    Park YS; Bae WK; Baker T; Lim J; Klimov VI
    Nano Lett; 2015 Nov; 15(11):7319-28. PubMed ID: 26397312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum dot semiconductor disk laser at 1.3  μm.
    Rantamäki A; Sokolovskii GS; Blokhin SA; Dudelev VV; Soboleva KK; Bobrov MA; Kuzmenkov AG; Vasil'ev AP; Gladyshev AG; Maleev NA; Ustinov VM; Okhotnikov O
    Opt Lett; 2015 Jul; 40(14):3400-3. PubMed ID: 26176479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lasing characteristics of InP-based InAs quantum dots depending on InGaAsP waveguide conditions.
    Jo B; Lee H; Choi I; Kim J; Kim JS; Han WS; Song JH; Oh DK; Noh SK; Leem JY
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9623-7. PubMed ID: 25971109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Directionality in Quantum Dot Shell Lasing Using Plasmonic Lattices.
    Guan J; Sagar LK; Li R; Wang D; Bappi G; Watkins NE; Bourgeois MR; Levina L; Fan F; Hoogland S; Voznyy O; Martins de Pina J; Schaller RD; Schatz GC; Sargent EH; Odom TW
    Nano Lett; 2020 Feb; 20(2):1468-1474. PubMed ID: 32004007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband tunable InAs/InP quantum dot external-cavity laser emitting around 1.55 μm.
    Gao F; Luo S; Ji HM; Yang XG; Liang P; Yang T
    Opt Express; 2015 Jul; 23(14):18493-500. PubMed ID: 26191907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.