These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 32210928)
1. Microwave-Assisted Green Synthesis and Characterization of Silver Nanoparticles Using Ashraf H; Anjum T; Riaz S; Naseem S Front Microbiol; 2020; 11():238. PubMed ID: 32210928 [TBL] [Abstract][Full Text] [Related]
2. Biosynthesis of Silver Nanoparticles from Chinnasamy G; Chandrasekharan S; Bhatnagar S Int J Nanomedicine; 2019; 14():9823-9836. PubMed ID: 31849471 [TBL] [Abstract][Full Text] [Related]
3. Sustainable synthesis of microwave-assisted IONPs using Spinacia oleracea L. for control of fungal wilt by modulating the defense system in tomato plants. Ashraf H; Anjum T; Riaz S; Batool T; Naseem S; Li G J Nanobiotechnology; 2022 Jan; 20(1):8. PubMed ID: 34983521 [TBL] [Abstract][Full Text] [Related]
4. Biosynthesis of silver nanoparticles using Al-Otibi F; Perveen K; Al-Saif NA; Alharbi RI; Bokhari NA; Albasher G; Al-Otaibi RM; Al-Mosa MA Saudi J Biol Sci; 2021 Apr; 28(4):2229-2235. PubMed ID: 33935565 [TBL] [Abstract][Full Text] [Related]
5. The effect of fish collagen on the silver nanoparticles sizes and shapes using modified microwave-assisted green synthesis method and their antibacterial activities. Mudhafar M; Zainol I; A J A; Abd MY; Alsailawi HA; Ghazaly NM; Hussein RM; Zorah M Heliyon; 2024 Jun; 10(12):e32837. PubMed ID: 39022059 [TBL] [Abstract][Full Text] [Related]
6. Biogenic silver nanoparticles from fungal sources: Synthesis, characterization, and antifungal potential. Ahmad N; Malik MA; Wani AH; Bhat MY Microb Pathog; 2024 Aug; 193():106742. PubMed ID: 38879139 [TBL] [Abstract][Full Text] [Related]
7. Dhaka A; Raj S; Githala CK; Chand Mali S; Trivedi R Front Bioeng Biotechnol; 2022; 10():977101. PubMed ID: 36267455 [TBL] [Abstract][Full Text] [Related]
8. Characterization, Antibacterial and Antioxidant Properties of Silver Nanoparticles Synthesized from Aqueous Extracts of Otunola GA; Afolayan AJ; Ajayi EO; Odeyemi SW Pharmacogn Mag; 2017 Jul; 13(Suppl 2):S201-S208. PubMed ID: 28808381 [TBL] [Abstract][Full Text] [Related]
9. Potential Treatment of Dermatophyte Abdallah BM; Rajendran P; Ali EM Molecules; 2023 Feb; 28(4):. PubMed ID: 36838531 [No Abstract] [Full Text] [Related]
10. Biosynthesized silver nanoparticles using Ahmad M; Ali A; Ullah Z; Sher H; Dai DQ; Ali M; Iqbal J; Zahoor M; Ali I Front Bioeng Biotechnol; 2022; 10():988607. PubMed ID: 36159677 [TBL] [Abstract][Full Text] [Related]
11. Ecofriendly phytofabrication of silver nanoparticles using aqueous extract of Cuphea carthagenensis and their antioxidant potential and antibacterial activity against clinically important human pathogens. Rather MA; Deori PJ; Gupta K; Daimary N; Deka D; Qureshi A; Dutta TK; Joardar SN; Mandal M Chemosphere; 2022 Aug; 300():134497. PubMed ID: 35398470 [TBL] [Abstract][Full Text] [Related]
12. Optimization of green silver nanoparticles as nanofungicides for management of rice bakanae disease. Shireen Akhter Jahan Q; Sultana Z; Ud-Daula MA; Md Ashikuzzaman ; Md Shamim Reja ; Rahman MM; Khaton A; Tang MAK; Rahman MS; Hossain Md Faruquee ; Lee SJ; Rahman ATMM Heliyon; 2024 Mar; 10(6):e27579. PubMed ID: 38533066 [TBL] [Abstract][Full Text] [Related]
13. Antibacterial Efficacy of Green Synthesized Silver Nanoparticles Using Dilbar S; Sher H; Ali H; Ullah R; Ali A; Ullah Z ACS Omega; 2023 Aug; 8(34):31155-31167. PubMed ID: 37663485 [No Abstract] [Full Text] [Related]
14. Green Synthesis of Silver Nanoparticles of Palei NN; Krishnan SN; Jayaraman R; Reddy SH; Balaji A; Samanta MK; Mohanta BC Recent Pat Nanotechnol; 2023; 17(3):270-280. PubMed ID: 35619324 [TBL] [Abstract][Full Text] [Related]
15. Characterization of bio-fabricated silver nanoparticles for distinct anti-fungal activity against sugarcane phytopathogens. Amna ; Mahmood T; Khan UN; Amin B; Javed MT; Mehmood S; Farooq MA; Sultan T; Munis MFH; Chaudhary HJ Microsc Res Tech; 2021 Jul; 84(7):1522-1530. PubMed ID: 33608993 [TBL] [Abstract][Full Text] [Related]
16. Effect of operational parameters, characterization and antibacterial studies of green synthesis of silver nanoparticles using Dada AO; Inyinbor AA; Idu EI; Bello OM; Oluyori AP; Adelani-Akande TA; Okunola AA; Dada O PeerJ; 2018; 6():e5865. PubMed ID: 30397553 [TBL] [Abstract][Full Text] [Related]
17. Nano-pesticidal potential of Danish M; Shahid M; Ahamad L; Raees K; Atef Hatamleh A; Al-Dosary MA; Mohamed A; Al-Wasel YA; Singh UB; Danish S Front Microbiol; 2022; 13():985852. PubMed ID: 36090121 [TBL] [Abstract][Full Text] [Related]
18. Optimization of process parameters for the synthesis of silver nanoparticles from Piper betle leaf aqueous extract, and evaluation of their antiphytofungal activity. Khan S; Singh S; Gaikwad S; Nawani N; Junnarkar M; Pawar SV Environ Sci Pollut Res Int; 2020 Aug; 27(22):27221-27233. PubMed ID: 31065983 [TBL] [Abstract][Full Text] [Related]
19. Biofabrication of zinc oxide nanoparticles from Lakshmeesha TR; Murali M; Ansari MA; Udayashankar AC; Alzohairy MA; Almatroudi A; Alomary MN; Asiri SMM; Ashwini BS; Kalagatur NK; Nayak CS; Niranjana SR Saudi J Biol Sci; 2020 Aug; 27(8):1923-1930. PubMed ID: 32714015 [TBL] [Abstract][Full Text] [Related]
20. Effects of green synthesised silver nanoparticles (ST06-AgNPs) using curcumin derivative (ST06) on human cervical cancer cells (HeLa) in vitro and EAC tumor bearing mice models. Murugesan K; Koroth J; Srinivasan PP; Singh A; Mukundan S; Karki SS; Choudhary B; Gupta CM Int J Nanomedicine; 2019; 14():5257-5270. PubMed ID: 31409988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]