BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32211013)

  • 1. Dimorphic Leaf Development of the Aquatic Plant
    Koga H; Doll Y; Hashimoto K; Toyooka K; Tsukaya H
    Front Plant Sci; 2020; 11():269. PubMed ID: 32211013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the unique molecular framework of heterophylly in the amphibious plant Callitriche palustris L.
    Koga H; Kojima M; Takebayashi Y; Sakakibara H; Tsukaya H
    Plant Cell; 2021 Oct; 33(10):3272-3292. PubMed ID: 34312675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rewiring of hormones and light response pathways underlies the inhibition of stomatal development in an amphibious plant Rorippa aquatica underwater.
    Ikematsu S; Umase T; Shiozaki M; Nakayama S; Noguchi F; Sakamoto T; Hou H; Gohari G; Kimura S; Torii KU
    Curr Biol; 2023 Feb; 33(3):543-556.e4. PubMed ID: 36696900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diving into the Water: Amphibious Plants as a Model for Investigating Plant Adaptations to Aquatic Environments.
    Koga H; Ikematsu S; Kimura S
    Annu Rev Plant Biol; 2024 Feb; ():. PubMed ID: 38424069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterophylly: Phenotypic Plasticity of Leaf Shape in Aquatic and Amphibious Plants.
    Li G; Hu S; Hou H; Kimura S
    Plants (Basel); 2019 Oct; 8(10):. PubMed ID: 31623228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The diversity of stomatal development regulation in
    Doll Y; Koga H; Tsukaya H
    Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33782136
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Doll Y; Koga H; Tsukaya H
    Plant Signal Behav; 2021 Nov; 16(11):1978201. PubMed ID: 34538209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthetic acclimation of terrestrial and submerged leaves in the amphibious plant
    Horiguchi G; Nemoto K; Yokoyama T; Hirotsu N
    AoB Plants; 2019 Apr; 11(2):plz009. PubMed ID: 30911367
    [No Abstract]   [Full Text] [Related]  

  • 9. Water-Wisteria as an ideal plant to study heterophylly in higher aquatic plants.
    Li G; Hu S; Yang J; Schultz EA; Clarke K; Hou H
    Plant Cell Rep; 2017 Aug; 36(8):1225-1236. PubMed ID: 28466187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A chromosome-level genome assembly for the amphibious plant Rorippa aquatica reveals its allotetraploid origin and mechanisms of heterophylly upon submergence.
    Sakamoto T; Ikematsu S; Nakayama H; Mandáková T; Gohari G; Sakamoto T; Li G; Hou H; Matsunaga S; Lysak MA; Kimura S
    Commun Biol; 2024 Apr; 7(1):431. PubMed ID: 38637665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomical Mechanisms of Leaf Blade Morphogenesis in
    Zhao W; Lv Z; Zhang H; Yue J; Zhang X; Li L; Huang F; Lin S
    Plants (Basel); 2024 Jan; 13(3):. PubMed ID: 38337866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosynthetic consequences of phenotypic plasticity in response to submergence: Rumex palustris as a case study.
    Mommer L; Pons TL; Visser EJ
    J Exp Bot; 2006; 57(2):283-90. PubMed ID: 16291797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape shifting by amphibious plants in dynamic hydrological niches.
    van Veen H; Sasidharan R
    New Phytol; 2021 Jan; 229(1):79-84. PubMed ID: 31782798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of light quality on leaf morphogenesis of a heterophyllous amphibious plant, Rotala hippuris.
    Momokawa N; Kadono Y; Kudoh H
    Ann Bot; 2011 Nov; 108(7):1299-306. PubMed ID: 21896573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutrient availability and nutrient use efficiency in plants growing in the transition zone between land and water.
    Cavalli G; Baattrup-Pedersen A; Riis T
    Plant Biol (Stuttg); 2016 Mar; 18(2):301-6. PubMed ID: 26414531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaves may function as temperature sensors in the heterophylly of Rorippa aquatica (Brassicaceae).
    Nakayama H; Kimura S
    Plant Signal Behav; 2015; 10(12):e1091909. PubMed ID: 26367499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular basis of developmental plasticity observed in heterophyllous leaf formation of Ludwigia arcuata (Onagraceae).
    Kuwabara A; Nagata T
    Planta; 2006 Sep; 224(4):761-70. PubMed ID: 16557398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the molecular basis for heterophylly in the aquatic plant
    He D; Guo P; Gugger PF; Guo Y; Liu X; Chen J
    PeerJ; 2018; 6():e4448. PubMed ID: 29507839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf Cell Morphology Alternation in Response to Environmental Signals in
    Sakamoto T; Ikematsu S; Namie K; Hou H; Li G; Kimura S
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osmotic stress, endogenous abscisic acid and the control of leaf morphology in Hippuris vulgaris L.
    Goliber TE; Feldman LJ
    Plant Cell Environ; 1989; 12(2):163-71. PubMed ID: 11539813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.