BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 32211130)

  • 1. Prediction of the miRNA interactome - Established methods and upcoming perspectives.
    Schäfer M; Ciaudo C
    Comput Struct Biotechnol J; 2020; 18():548-557. PubMed ID: 32211130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Based Methods and Best Practices of microRNA-Target Prediction and Validation.
    Nath N; Simm S
    Adv Exp Med Biol; 2022; 1385():109-131. PubMed ID: 36352212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive machine-learning-based analysis of microRNA-target interactions reveals variable transferability of interaction rules across species.
    Ben Or G; Veksler-Lublinsky I
    BMC Bioinformatics; 2021 May; 22(1):264. PubMed ID: 34030625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random walks on mutual microRNA-target gene interaction network improve the prediction of disease-associated microRNAs.
    Le DH; Verbeke L; Son LH; Chu DT; Pham VH
    BMC Bioinformatics; 2017 Nov; 18(1):479. PubMed ID: 29137601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Limitations of Existing Approaches in Improving MicroRNA Target Prediction Accuracy.
    Loganantharaj R; Randall TA
    Methods Mol Biol; 2017; 1617():133-158. PubMed ID: 28540682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive overview and assessment of computational prediction of microRNA targets in animals.
    Fan X; Kurgan L
    Brief Bioinform; 2015 Sep; 16(5):780-94. PubMed ID: 25471818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Too Many False Targets for MicroRNAs: Challenges and Pitfalls in Prediction of miRNA Targets and Their Gene Ontology in Model and Non-model Organisms.
    Fridrich A; Hazan Y; Moran Y
    Bioessays; 2019 Apr; 41(4):e1800169. PubMed ID: 30919506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Attribution Sequence Alignment to Interpret Deep Learning Models for miRNA Binding Site Prediction.
    Grešová K; Vaculík O; Alexiou P
    Biology (Basel); 2023 Feb; 12(3):. PubMed ID: 36979061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative proteomic strategies for the identification of microRNA targets.
    Li C; Xiong Q; Zhang J; Ge F; Bi LJ
    Expert Rev Proteomics; 2012 Oct; 9(5):549-59. PubMed ID: 23194271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LMI-DForest: A deep forest model towards the prediction of lncRNA-miRNA interactions.
    Wang W; Guan X; Khan MT; Xiong Y; Wei DQ
    Comput Biol Chem; 2020 Dec; 89():107406. PubMed ID: 33120126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inter- and intra-combinatorial regulation by transcription factors and microRNAs.
    Zhou Y; Ferguson J; Chang JT; Kluger Y
    BMC Genomics; 2007 Oct; 8():396. PubMed ID: 17971223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complementarity to an miRNA seed region is sufficient to induce moderate repression of a target transcript in the unicellular green alga Chlamydomonas reinhardtii.
    Yamasaki T; Voshall A; Kim EJ; Moriyama E; Cerutti H; Ohama T
    Plant J; 2013 Dec; 76(6):1045-56. PubMed ID: 24127635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A tale of two sequences: microRNA-target chimeric reads.
    Broughton JP; Pasquinelli AE
    Genet Sel Evol; 2016 Apr; 48():31. PubMed ID: 27044644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep neural networks for human microRNA precursor detection.
    Zheng X; Fu X; Wang K; Wang M
    BMC Bioinformatics; 2020 Jan; 21(1):17. PubMed ID: 31931701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meta-analysis of differentially-regulated hepatic microRNAs identifies candidate post-transcriptional regulation networks of intermediary metabolism in rainbow trout.
    Kostyniuk DJ; Mennigen JA
    Comp Biochem Physiol Part D Genomics Proteomics; 2020 Dec; 36():100750. PubMed ID: 33038710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovering functional impacts of miRNAs in cancers using a causal deep learning model.
    Chen L; Lu X
    BMC Med Genomics; 2018 Dec; 11(Suppl 6):116. PubMed ID: 30598118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep belief network-Based Matrix Factorization Model for MicroRNA-Disease Associations Prediction.
    Ding Y; Wang F; Lei X; Liao B; Wu FX
    Evol Bioinform Online; 2020; 16():1176934320919707. PubMed ID: 32523330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning Techniques in Exploring MicroRNA Gene Discovery, Targets, and Functions.
    Singh S; Benton RG; Singh A; Singh A
    Methods Mol Biol; 2017; 1617():211-224. PubMed ID: 28540688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MiRTif: a support vector machine-based microRNA target interaction filter.
    Yang Y; Wang YP; Li KB
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S4. PubMed ID: 19091027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic transcriptome wide analysis of lncRNA-miRNA interactions.
    Jalali S; Bhartiya D; Lalwani MK; Sivasubbu S; Scaria V
    PLoS One; 2013; 8(2):e53823. PubMed ID: 23405074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.