These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32211643)

  • 1. Visible-light-driven dry reforming of methane using a semiconductor-supported catalyst.
    Cho Y; Shoji S; Yamaguchi A; Hoshina T; Fujita T; Abe H; Miyauchi M
    Chem Commun (Camb); 2020 Apr; 56(33):4611-4614. PubMed ID: 32211643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane.
    Khairudin NF; Sukri MFF; Khavarian M; Mohamed AR
    Beilstein J Nanotechnol; 2018; 9():1162-1183. PubMed ID: 29719767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal Carbide as A Light-Harvesting and Anticoking Catalysis Support for Dry Reforming of Methane.
    Takeda K; Yamaguchi A; Cho Y; Anjaneyulu O; Fujita T; Abe H; Miyauchi M
    Glob Chall; 2020 Jan; 4(1):1900067. PubMed ID: 31956431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoassisted Selective Steam and Dry Reforming of Methane to Syngas Catalyzed by Rhodium-Vanadium Bimetallic Oxide Cluster Anions at Room Temperature.
    Zhao YX; Yang B; Li HF; Zhang Y; Yang Y; Liu QY; Xu HG; Zheng WJ; He SG
    Angew Chem Int Ed Engl; 2020 Nov; 59(47):21216-21223. PubMed ID: 32767516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Review on the Different Aspects and Challenges of the Dry Reforming of Methane (DRM) Reaction.
    Hussien AGS; Polychronopoulou K
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-Induced Redox Looping of a Rhodium/Ce
    Yang Y; Chai Z; Qin X; Zhang Z; Muhetaer A; Wang C; Huang H; Yang C; Ma D; Li Q; Xu D
    Angew Chem Int Ed Engl; 2022 May; 61(21):e202200567. PubMed ID: 35277912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sinter-resistant Rh nanoparticles supported on γ-Al
    Chu S; Cai Z; Wang M; Zheng Y; Wang Y; Zhou Z; Weng W
    Nanoscale; 2020 Oct; 12(40):20922-20932. PubMed ID: 33090164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic effects of Ni-Fe alloy catalysts on dry reforming of methane at low temperatures in an electric field.
    Motomura A; Nakaya Y; Sampson C; Higo T; Torimoto M; Tsuneki H; Furukawa S; Sekine Y
    RSC Adv; 2022 Oct; 12(44):28359-28363. PubMed ID: 36320534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.
    Han JW; Kim C; Park JS; Lee H
    ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Support Induced Effects on the Ir Nanoparticles Activity, Selectivity and Stability Performance under CO
    Nikolaraki E; Goula G; Panagiotopoulou P; Taylor MJ; Kousi K; Kyriakou G; Kondarides DI; Lambert RM; Yentekakis IV
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimetallic Metal-Organic Framework-Derived Hybrid Nanostructures as High-Performance Catalysts for Methane Dry Reforming.
    Liang TY; Senthil Raja D; Chin KC; Huang CL; Sethupathi SA; Leong LK; Tsai DH; Lu SY
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15183-15193. PubMed ID: 32167283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise Modulation of Triple-Phase Boundaries towards a Highly Functional Exsolved Catalyst for Dry Reforming of Methane under a Dilution-Free System.
    Oh J; Joo S; Lim C; Kim HJ; Ciucci F; Wang JQ; Han JW; Kim G
    Angew Chem Int Ed Engl; 2022 Aug; 61(33):e202204990. PubMed ID: 35638132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of Carbon Dioxide by Methane Reforming under Visible-Light Irradiation: Surface-Plasmon-Mediated Nonpolar Molecule Activation.
    Liu H; Meng X; Dao TD; Zhang H; Li P; Chang K; Wang T; Li M; Nagao T; Ye J
    Angew Chem Int Ed Engl; 2015 Sep; 54(39):11545-9. PubMed ID: 26271348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Active Ni-Ru Bimetallic Catalyst Integrated with MFI Zeolite-Loaded Cerium Zirconium Oxide for Dry Reforming of Methane.
    Miao C; Chen S; Shang K; Liang L; Ouyang J
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47616-47632. PubMed ID: 36223106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promoting Dry Reforming of Methane Catalysed by Atomically-Dispersed Ni over Ceria-Upgraded Boron Nitride.
    Li X; Phornphimon M; Zhang X; Deng J; Zhang D
    Chem Asian J; 2022 May; 17(9):e202101428. PubMed ID: 35246955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Photothermal Catalyst from Biomass Ash (Bagasse) for Hydrogen Production via Dry Reforming of Methane (DRM): An Experimental Study.
    Kanchanakul I; Srinophakun TR; Kuboon S; Kaneko H; Kraithong W; Miyauchi M; Yamaguchi A
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review on Bimetallic Nickel-Based Catalysts for CO
    Bian Z; Das S; Wai MH; Hongmanorom P; Kawi S
    Chemphyschem; 2017 Nov; 18(22):3117-3134. PubMed ID: 28710875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genesis of Active Pt/CeO
    Das S; Anjum U; Lim KH; He Q; Hoffman AS; Bare SR; Kozlov SM; Gates BC; Kawi S
    Small; 2023 Jun; 19(26):e2207272. PubMed ID: 36942900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Efficient Solar-Driven Dry Reforming of Methane on a Rh/LaNiO
    Yao Y; Li B; Gao X; Yang Y; Yu J; Lei J; Li Q; Meng X; Chen L; Xu D
    Adv Mater; 2023 Sep; 35(39):e2303654. PubMed ID: 37314337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen production from CO
    Kurdi AN; Ibrahim AA; Al-Fatesh AS; Alquraini AA; Abasaeed AE; Fakeeha AH
    RSC Adv; 2022 Mar; 12(17):10846-10854. PubMed ID: 35424981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.