BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 32211665)

  • 1. 3D printing of cellular materials for advanced electrochemical energy storage and conversion.
    Tian X; Zhou K
    Nanoscale; 2020 Apr; 12(14):7416-7432. PubMed ID: 32211665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printing for Solid-State Energy Storage.
    Tian X; Xu B
    Small Methods; 2021 Dec; 5(12):e2100877. PubMed ID: 34928040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of 3D Printing Methods and Materials for Electrochemical Energy Storage.
    Egorov V; Gulzar U; Zhang Y; Breen S; O'Dwyer C
    Adv Mater; 2020 Jul; 32(29):e2000556. PubMed ID: 32510631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances and perspectives of 3D printed micro-supercapacitors: from design to smart integrated devices.
    Zong W; Ouyang Y; Miao YE; Liu T; Lai F
    Chem Commun (Camb); 2022 Feb; 58(13):2075-2095. PubMed ID: 35048921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inkjet-Printing Technology for Supercapacitor Application: Current State and Perspectives.
    Sajedi-Moghaddam A; Rahmanian E; Naseri N
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34487-34504. PubMed ID: 32628006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Printing of Customized Li-Ion Batteries with Thick Electrodes.
    Wei TS; Ahn BY; Grotto J; Lewis JA
    Adv Mater; 2018 Apr; 30(16):e1703027. PubMed ID: 29543991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic/Inorganic Hybrid Fibers: Controllable Architectures for Electrochemical Energy Applications.
    Zhang F; Sherrell PC; Luo W; Chen J; Li W; Yang J; Zhu M
    Adv Sci (Weinh); 2021 Nov; 8(22):e2102859. PubMed ID: 34633752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-Organic Frameworks Derived Functional Materials for Electrochemical Energy Storage and Conversion: A Mini Review.
    Lu XF; Fang Y; Luan D; Lou XWD
    Nano Lett; 2021 Feb; 21(4):1555-1565. PubMed ID: 33567819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional inks and extrusion-based 3D printing of 2D materials: a review of current research and applications.
    Hassan K; Nine MJ; Tung TT; Stanley N; Yap PL; Rastin H; Yu L; Losic D
    Nanoscale; 2020 Oct; 12(37):19007-19042. PubMed ID: 32945332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printing of functional microrobots.
    Li J; Pumera M
    Chem Soc Rev; 2021 Mar; 50(4):2794-2838. PubMed ID: 33470252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors.
    Xu Y; Shi G; Duan X
    Acc Chem Res; 2015 Jun; 48(6):1666-75. PubMed ID: 26042764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The emerging role of 3D printing in water desalination.
    Khalil A; Ahmed FE; Hilal N
    Sci Total Environ; 2021 Oct; 790():148238. PubMed ID: 34107408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks.
    Rocha VG; García-Tuñón E; Botas C; Markoulidis F; Feilden E; D'Elia E; Ni N; Shaffer M; Saiz E
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37136-37145. PubMed ID: 28920439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances on High-Entropy Alloys for 3D Printing.
    Han C; Fang Q; Shi Y; Tor SB; Chua CK; Zhou K
    Adv Mater; 2020 Jul; 32(26):e1903855. PubMed ID: 32431005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Printable Nanomaterials for the Fabrication of High-Performance Supercapacitors.
    Sun J; Cui B; Chu F; Yun C; He M; Li L; Song Y
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30011866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printing for Electrochemical Energy Applications.
    Browne MP; Redondo E; Pumera M
    Chem Rev; 2020 Mar; 120(5):2783-2810. PubMed ID: 32049499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion.
    Shi Q; Cha Y; Song Y; Lee JI; Zhu C; Li X; Song MK; Du D; Lin Y
    Nanoscale; 2016 Aug; 8(34):15414-47. PubMed ID: 27531643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Printing of Freestanding MXene Architectures for Current-Collector-Free Supercapacitors.
    Yang W; Yang J; Byun JJ; Moissinac FP; Xu J; Haigh SJ; Domingos M; Bissett MA; Dryfe RAW; Barg S
    Adv Mater; 2019 Sep; 31(37):e1902725. PubMed ID: 31343084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printing of Additive-Free 2D Ti
    Orangi J; Hamade F; Davis VA; Beidaghi M
    ACS Nano; 2020 Jan; 14(1):640-650. PubMed ID: 31891247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three dimensional graphene based materials: Synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation.
    Wang H; Yuan X; Zeng G; Wu Y; Liu Y; Jiang Q; Gu S
    Adv Colloid Interface Sci; 2015 Jul; 221():41-59. PubMed ID: 25983012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.