BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32211905)

  • 1. Quantifying Areas of Vascular Leakage in Sickle Cell Retinopathy Using Standard and Widefield Fluorescein Angiography.
    Barbosa J; Malbin B; Le K; Lin X
    Ophthalmic Surg Lasers Imaging Retina; 2020 Mar; 51(3):153-158. PubMed ID: 32211905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Coherence Tomography Angiography and Ultra-widefield Fluorescein Angiography for Early Detection of Adolescent Sickle Retinopathy.
    Pahl DA; Green NS; Bhatia M; Lee MT; Chang JS; Licursi M; Briamonte C; Smilow E; Chen RWS
    Am J Ophthalmol; 2017 Nov; 183():91-98. PubMed ID: 28860042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peripheral multifield scanning fluorescein angiography for the evaluation of proliferative sickle cell retinopathy.
    Stephens RF; Magargal LE
    Ophthalmic Surg; 1987 Apr; 18(4):291-4. PubMed ID: 2438617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and monitoring of sickle cell retinopathy using ultra wide-field color photography and fluorescein angiography.
    Cho M; Kiss S
    Retina; 2011 Apr; 31(4):738-47. PubMed ID: 21836403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Role of OCT-angiography in the management of sickle cell retinopathy].
    Croisé F; Le Lez ML; Pisella PJ
    J Fr Ophtalmol; 2020 Jan; 43(1):7-17. PubMed ID: 31831271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UTILITY OF ULTRA-WIDEFIELD RETINAL IMAGING FOR THE STAGING AND MANAGEMENT OF SICKLE CELL RETINOPATHY.
    Han IC; Zhang AY; Liu TYA; Linz MO; Scott AW
    Retina; 2019 May; 39(5):836-843. PubMed ID: 29384996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated quantitative characterisation of retinal vascular leakage and microaneurysms in ultra-widefield fluorescein angiography.
    Ehlers JP; Wang K; Vasanji A; Hu M; Srivastava SK
    Br J Ophthalmol; 2017 Jun; 101(6):696-699. PubMed ID: 28432113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TEMPORAL THINNING IN SICKLE CELL RETINOPATHY IS ASSOCIATED WITH DIMINISHED PERFUSION ON OCTA AND DENSE SCOTOMA ON MICROPERIMETERY.
    Sambhav K; Grover S; Chalam KV
    Retin Cases Brief Rep; 2019; 13(4):308-313. PubMed ID: 28644178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Detection of Sea Fan Neovascularization From Ultra-Widefield Color Fundus Photographs of Patients With Sickle Cell Hemoglobinopathy.
    Cai S; Parker F; Urias MG; Goldberg MF; Hager GD; Scott AW
    JAMA Ophthalmol; 2021 Feb; 139(2):206-213. PubMed ID: 33377944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optociliary shunts and sickle retinopathy in a woman with sickle cell trait.
    Dowhan TP; Bodnar ME; Daniels MB
    Ann Ophthalmol; 1990 Feb; 22(2):66-9. PubMed ID: 2316955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of Diabetic Neovascularization on Ultra-Widefield Fluorescein Angiography and on Simulated Widefield OCT Angiography.
    Russell JF; Flynn HW; Sridhar J; Townsend JH; Shi Y; Fan KC; Scott NL; Hinkle JW; Lyu C; Gregori G; Russell SR; Rosenfeld PJ
    Am J Ophthalmol; 2019 Nov; 207():110-120. PubMed ID: 31194952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variable Practice Patterns for Management of Sickle Cell Retinopathy.
    Mishra K; Bajaj R; Scott AW
    Ophthalmol Retina; 2021 Jul; 5(7):715-717. PubMed ID: 33301951
    [No Abstract]   [Full Text] [Related]  

  • 13. Spontaneous Reversal of Peripheral Nonperfusion in Sickle Cell Retinopathy.
    Ramtohul P; Minvielle W; Couturier A
    Ophthalmol Retina; 2021 Jul; 5(7):695. PubMed ID: 34243971
    [No Abstract]   [Full Text] [Related]  

  • 14. Scatter retinal photocoagulation for proliferative sickle cell retinopathy.
    Rednam KR; Jampol LM; Goldberg MF
    Am J Ophthalmol; 1982 May; 93(5):594-9. PubMed ID: 6177246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Macular Vascular Abnormalities Identified by Optical Coherence Tomography Angiography in Sickle Cell Disease.
    Han IC; Tadarati M; Pacheco KD; Scott AW
    Am J Ophthalmol; 2017 May; 177():90-99. PubMed ID: 28212878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Retinal Vascular Lesions Using Ultra-Widefield Angiography in Hereditary Hemorrhagic Telangiectasia Patients.
    Sindhar S; O'Bryhim BE; Licata J; Piccirillo JF; Apte RS
    Ophthalmol Retina; 2019 Jun; 3(6):510-515. PubMed ID: 31174673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of wide-field fluorescein angiography and 9-field montage angiography in uveitis.
    Nicholson BP; Nigam D; Miller D; Agrón E; Dalal M; Jacobs-El N; da Rocha Lima B; Cunningham D; Nussenblatt R; Sen HN
    Am J Ophthalmol; 2014 Mar; 157(3):673-7. PubMed ID: 24321475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NEW ULTRA-WIDE-FIELD ANGIOGRAPHIC GRADING SCHEME FOR RADIATION RETINOPATHY AFTER IODINE-125 BRACHYTHERAPY FOR UVEAL MELANOMA.
    McCannel TA; Kim E; Kamrava M; Lamb J; Caprioli J; Yang D; McCannel CA
    Retina; 2018 Dec; 38(12):2415-2421. PubMed ID: 29016456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sickle cell retinopathy. A focused review.
    Abdalla Elsayed MEA; Mura M; Al Dhibi H; Schellini S; Malik R; Kozak I; Schatz P
    Graefes Arch Clin Exp Ophthalmol; 2019 Jul; 257(7):1353-1364. PubMed ID: 30895451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy of Retinal Lesion Screening in Von Hippel-Lindau Patients With Widefield Color Fundus Imaging Versus Widefield FA.
    Golas L; Skondra D; Ittiara S; Bajic N; Jeng-Miller KW; Mukai S; Yonekawa Y; Blair MP
    Ophthalmic Surg Lasers Imaging Retina; 2019 Nov; 50(11):e260-e265. PubMed ID: 31755976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.