These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32211933)

  • 1. Extracellular ionic fluxes suggest the basis for cellular life at the 1/f ridge of extended criticality.
    Pietruszka M; Olszewska M
    Eur Biophys J; 2020 May; 49(3-4):239-252. PubMed ID: 32211933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of time-series regularity metrics to ion flux data from a population of pollen tubes.
    Pietruszka MA
    Commun Integr Biol; 2021 Mar; 14(1):51-54. PubMed ID: 33796210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single measurement detection of individual cell ionic oscillations using an n-type semiconductor - electrolyte interface.
    Pietruszka M; Olszewska M; Machura L; Rówiński E
    Sci Rep; 2018 May; 8(1):7875. PubMed ID: 29777196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collective excitations of germinating pollen grains at critical points.
    Pietruszka MA
    Sci Rep; 2023 Jan; 13(1):610. PubMed ID: 36635415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-organized criticality as a fundamental property of neural systems.
    Hesse J; Gross T
    Front Syst Neurosci; 2014; 8():166. PubMed ID: 25294989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of ion fluxes in polarized cell growth and morphogenesis: the pollen tube as an experimental paradigm.
    Michard E; Alves F; Feijó JA
    Int J Dev Biol; 2009; 53(8-10):1609-22. PubMed ID: 19247955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pollen-pistil interactions and the endomembrane system.
    Kumar A; McClure B
    J Exp Bot; 2010 Apr; 61(7):2001-13. PubMed ID: 20363870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins.
    Cheung AY; Duan QH; Costa SS; de Graaf BH; Di Stilio VS; Feijo J; Wu HM
    Mol Plant; 2008 Jul; 1(4):686-702. PubMed ID: 19825573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The essential role of anionic transport in plant cells: the pollen tube as a case study.
    Tavares B; Domingos P; Dias PN; Feijó JA; Bicho A
    J Exp Bot; 2011 Apr; 62(7):2273-98. PubMed ID: 21511914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vesicle trafficking dynamics and visualization of zones of exocytosis and endocytosis in tobacco pollen tubes.
    Zonia L; Munnik T
    J Exp Bot; 2008; 59(4):861-73. PubMed ID: 18304978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome profiling of tobacco (Nicotiana tabacum) pollen and pollen tubes.
    Conze LL; Berlin S; Le Bail A; Kost B
    BMC Genomics; 2017 Aug; 18(1):581. PubMed ID: 28784084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium: A Critical Factor in Pollen Germination and Tube Elongation.
    Zheng RH; Su S; Xiao H; Tian HQ
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30669423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure-induced wall thickness variations in multi-layered wall of a pollen tube and Fourier decomposition of growth oscillations.
    Pietruszka M; Haduch-Sendecka A
    Gen Physiol Biophys; 2015 Apr; 34(2):145-56. PubMed ID: 25675387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Durotropic Growth of Pollen Tubes.
    Reimann R; Kah D; Mark C; Dettmer J; Reimann TM; Gerum RC; Geitmann A; Fabry B; Dietrich P; Kost B
    Plant Physiol; 2020 Jun; 183(2):558-569. PubMed ID: 32241878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional compartmentalization in pollen tubes.
    Cheung AY; Wu HM
    J Exp Bot; 2007; 58(1):75-82. PubMed ID: 16980593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ni(2+) effects on Nicotiana tabacum L. pollen germination and pollen tube growth.
    Breygina M; Matveyeva N; Polevova S; Meychik N; Nikolaeva Y; Mamaeva A; Yermakov I
    Biometals; 2012 Dec; 25(6):1221-33. PubMed ID: 22983762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localized endocytosis in tobacco pollen tubes: visualisation and dynamics of membrane retrieval by a fluorescent phospholipid.
    Lisboa S; Scherer GE; Quader H
    Plant Cell Rep; 2008 Jan; 27(1):21-8. PubMed ID: 17786450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic distribution of ARGONAUTE1 (AGO1) and ARGONAUTE4 (AGO4) in Hyacinthus orientalis L. pollen grains and pollen tubes growing in vitro.
    Niedojadło K; Kupiecka M; Kołowerzo-Lubnau A; Lenartowski R; Niedojadło J; Bednarska-Kozakiewicz E
    Protoplasma; 2020 May; 257(3):793-805. PubMed ID: 31916009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution Towards Criticality in Ising Neural Agents.
    Khajehabdollahi S; Witkowski O
    Artif Life; 2020; 26(1):112-129. PubMed ID: 32027529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tobacco RhoGTPase ACTIVATING PROTEIN1 spatially restricts signaling of RAC/Rop to the apex of pollen tubes.
    Klahre U; Kost B
    Plant Cell; 2006 Nov; 18(11):3033-46. PubMed ID: 17098809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.