These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 32212013)

  • 1. Assessment of sugar and sugar accumulation-related gene expression profiles reveal new insight into the formation of low sugar accumulation trait in a sweet orange (Citrus sinensis) bud mutant.
    Hussain SB; Guo LX; Shi CY; Khan MA; Bai YX; Du W; Liu YZ
    Mol Biol Rep; 2020 Apr; 47(4):2781-2791. PubMed ID: 32212013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Citrate Accumulation-Related Gene Expression and/or Enzyme Activity Analysis Combined With Metabolomics Provide a Novel Insight for an Orange Mutant.
    Guo LX; Shi CY; Liu X; Ning DY; Jing LF; Yang H; Liu YZ
    Sci Rep; 2016 Jul; 6():29343. PubMed ID: 27385485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide identification and transcript analysis of vacuolar-ATPase genes in citrus reveal their possible involvement in citrate accumulation.
    Shi CY; Hussain SB; Guo LX; Yang H; Ning DY; Liu YZ
    Phytochemistry; 2018 Nov; 155():147-154. PubMed ID: 30121429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular physiology for the increase of soluble sugar accumulation in citrus fruits under drought stress.
    Khan MA; Liu DH; Alam SM; Zaman F; Luo Y; Han H; Ateeq M; Liu YZ
    Plant Physiol Biochem; 2023 Oct; 203():108056. PubMed ID: 37783072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck).
    Liu Q; Xu J; Liu Y; Zhao X; Deng X; Guo L; Gu J
    J Exp Bot; 2007; 58(15-16):4161-71. PubMed ID: 18182424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fruit characteristics, soluble sugar compositions and transcriptome analysis during the development of Citrus maxima "seedless", and identification of SUS and INV genes involved in sucrose degradation.
    Deng S; Mai Y; Niu J
    Gene; 2019 Mar; 689():131-140. PubMed ID: 30576805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Difference of a citrus late-ripening mutant (Citrus sinensis) from its parental line in sugar and acid metabolism at the fruit ripening stage.
    Liu Y; Liu Q; Xiong J; Deng X
    Sci China C Life Sci; 2007 Aug; 50(4):511-7. PubMed ID: 17653673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative proteomics of a lycopene-accumulating mutant reveals the important role of oxidative stress on carotenogenesis in sweet orange (Citrus sinensis [L.] osbeck).
    Pan Z; Liu Q; Yun Z; Guan R; Zeng W; Xu Q; Deng X
    Proteomics; 2009 Dec; 9(24):5455-70. PubMed ID: 19834898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene coexpression network analysis of fruit transcriptomes uncovers a possible mechanistically distinct class of sugar/acid ratio-associated genes in sweet orange.
    Qiao L; Cao M; Zheng J; Zhao Y; Zheng ZL
    BMC Plant Biol; 2017 Oct; 17(1):186. PubMed ID: 29084509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome and weighted gene co-expression network analyses reveal key genes and pathways involved in early fruit ripening in Citrus sinensis.
    Chen J; Xie L; Lin Y; Zhong B; Wan S
    BMC Genomics; 2024 Jul; 25(1):735. PubMed ID: 39080567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative transcriptome analyses between a spontaneous late-ripening sweet orange mutant and its wild type suggest the functions of ABA, sucrose and JA during citrus fruit ripening.
    Zhang YJ; Wang XJ; Wu JX; Chen SY; Chen H; Chai LJ; Yi HL
    PLoS One; 2014; 9(12):e116056. PubMed ID: 25551568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and transcript profiles of citrus growth-regulating factor genes involved in the regulation of leaf and fruit development.
    Liu X; Guo LX; Jin LF; Liu YZ; Liu T; Fan YH; Peng SA
    Mol Biol Rep; 2016 Oct; 43(10):1059-67. PubMed ID: 27491940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-spatiotemporal-resolution transcriptomes provide insights into fruit development and ripening in Citrus sinensis.
    Feng G; Wu J; Xu Y; Lu L; Yi H
    Plant Biotechnol J; 2021 Jul; 19(7):1337-1353. PubMed ID: 33471410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sugar metabolism, chip color, invertase activity, and gene expression during long-term cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar invertase silencing lines of Katahdin.
    Wiberley-Bradford AE; Busse JS; Jiang J; Bethke PC
    BMC Res Notes; 2014 Nov; 7():801. PubMed ID: 25399251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus.
    Wu J; Xu Z; Zhang Y; Chai L; Yi H; Deng X
    J Exp Bot; 2014 Apr; 65(6):1651-71. PubMed ID: 24600016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Light-Emitting Diodes and Ultraviolet Irradiation on the Soluble Sugar, Organic Acid, and Carotenoid Content of Postharvest Sweet Oranges (
    Hu L; Yang C; Zhang L; Feng J; Xi W
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31546726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development.
    Liu Q; Zhu A; Chai L; Zhou W; Yu K; Ding J; Xu J; Deng X
    J Exp Bot; 2009; 60(3):801-13. PubMed ID: 19218315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative transcripts profiling reveals new insight into molecular processes regulating lycopene accumulation in a sweet orange (Citrus sinensis) red-flesh mutant.
    Xu Q; Yu K; Zhu A; Ye J; Liu Q; Zhang J; Deng X
    BMC Genomics; 2009 Nov; 10():540. PubMed ID: 19922663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transcription factor CitZAT5 modifies sugar accumulation and hexose proportion in citrus fruit.
    Fang H; Shi Y; Liu S; Jin R; Sun J; Grierson D; Li S; Chen K
    Plant Physiol; 2023 Jul; 192(3):1858-1876. PubMed ID: 36911987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CsPH8, a P-type proton pump gene, plays a key role in the diversity of citric acid accumulation in citrus fruits.
    Shi CY; Hussain SB; Yang H; Bai YX; Khan MA; Liu YZ
    Plant Sci; 2019 Dec; 289():110288. PubMed ID: 31623791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.