BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32212108)

  • 1. Screening of Fungi Isolates for C-4 Hydroxylation of R-2-Phenoxypropionic Acid Based on a Novel 96-Well Microplate Assay Method.
    Zhou HY; Jiang R; Li YZ; Xu W; Wang YS; Xue YP; Zheng YG
    Appl Biochem Biotechnol; 2020 Sep; 192(1):42-56. PubMed ID: 32212108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-throughput screening method for improved R-2-(4-hydroxyphenoxy)propionic acid biosynthesis.
    Zhou HY; Li YZ; Jiang R; Hu HF; Wang YS; Liu ZQ; Xue YP; Zheng YG
    Bioprocess Biosyst Eng; 2019 Oct; 42(10):1573-1582. PubMed ID: 31190281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of (
    Wang YS; Wang XL; Zhou HY; Hu HF; Xue YP; Zheng YG
    Prep Biochem Biotechnol; 2020; 50(8):781-787. PubMed ID: 32153245
    [No Abstract]   [Full Text] [Related]  

  • 4. Efficient production of R-2-(4-hydroxyphenoxy) propionic acid by Beauveria bassiana using biofilm-based two-stage fermentation.
    Zou S; Ma Y; Ding W; Jiang Y; Chen X; Chen J; Gao H; Xue Y; Zheng Y
    Bioresour Technol; 2024 May; 399():130588. PubMed ID: 38490460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rapid throughput assay for screening (R)-2-(4-hydroxyphenoxy)propionic acid producing microbes.
    Hu HF; Zhou HY; Wang MX; Wang YS; Xue YP; Zheng YG
    J Microbiol Methods; 2019 Mar; 158():44-51. PubMed ID: 30703447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective Resolution of (R, S)-2-Phenoxy-Propionic Acid Methyl Ester by Covalent Immobilized Lipase from Aspergillus oryzae.
    Zhong W; Zhang M; Li X; Zhang Y; Wang Z; Zheng J
    Appl Biochem Biotechnol; 2020 Mar; 190(3):1049-1059. PubMed ID: 31664700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of R-2-(4-hydroxyphenoxy) propionic acid biosynthesis of Beauveria bassiana by combined mutagenesis.
    Hu HF; Zhou HY; Cheng GP; Xue YP; Wang YS; Zheng YG
    Biotechnol Appl Biochem; 2020 May; 67(3):343-353. PubMed ID: 31846537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced (
    Hu HF; Zhou HY; Wang XL; Wang YS; Xue YP; Zheng YG
    J Microbiol Biotechnol; 2020 Aug; 30(8):1252-1260. PubMed ID: 32522969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application.
    Saini R; Saini JK; Adsul M; Patel AK; Mathur A; Tuli D; Singhania RR
    Bioresour Technol; 2015; 188():240-6. PubMed ID: 25661515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of Penicillium expansum WH-3 for the production of L(+)-tartaric acid.
    Bao WN; Chen Y; Liao HX; Chen H; Liu SW; Liu Y
    J Zhejiang Univ Sci B; 2020 Oct.; 21(10):835-840. PubMed ID: 33043648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of three fungi with the potential of transforming glycyrrhizin.
    Wang C; Guo XX; Wang XY; Qi F; Feng SJ; Li C; Zhou XH
    World J Microbiol Biotechnol; 2013 May; 29(5):781-8. PubMed ID: 23247917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening and Identification of Novel Ochratoxin A-Producing Fungi from Grapes.
    Zhang X; Li Y; Wang H; Gu X; Zheng X; Wang Y; Diao J; Peng Y; Zhang H
    Toxins (Basel); 2016 Nov; 8(11):. PubMed ID: 27845758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains.
    Papanikolaou S; Dimou A; Fakas S; Diamantopoulou P; Philippoussis A; Galiotou-Panayotou M; Aggelis G
    J Appl Microbiol; 2011 May; 110(5):1138-50. PubMed ID: 21281409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Riboflavin formation by mould fungi cultivated on hydrocarbon-containing media.
    Sabry SA; el-Refai AH; Gamati SY
    Microbios; 1989; 57(230):33-40. PubMed ID: 2739581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autoradiographic method to screen for soil microorganisms which accumulate zinc.
    Zamani B; Knezek BD; Flegler SL; Beneke ES; Dazzo FB
    Appl Environ Microbiol; 1985 Jan; 49(1):137-42. PubMed ID: 3883897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection and molecular characterization of cellulolytic-xylanolytic fungi from surface soil-biomass mixtures from Black Belt sites.
    Okeke BC; Hall RW; Nanjundaswamy A; Thomson MS; Deravi Y; Sawyer L; Prescott A
    Microbiol Res; 2015 Jun; 175():24-33. PubMed ID: 25817459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitration of tyrosine by hydrogen peroxide and nitrite.
    Oury TD; Tatro L; Ghio AJ; Piantadosi CA
    Free Radic Res; 1995 Dec; 23(6):537-47. PubMed ID: 8574348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxylations of carbaryl by soil fungi.
    Bollag JM; Liu SY
    Nature; 1972 Mar; 236(5343):177-8. PubMed ID: 4623228
    [No Abstract]   [Full Text] [Related]  

  • 19. Survey of Philippine coffee beans for the presence of ochratoxigenic fungi.
    Alvindia DG; de Guzman MF
    Mycotoxin Res; 2016 May; 32(2):61-7. PubMed ID: 26814977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biohydroxylation of (-)-ambrox®, (-)-sclareol, and (+)-sclareolide by whole cells of Brazilian marine-derived fungi.
    Martins MP; Ouazzani J; Arcile G; Jeller AH; de Lima JP; Seleghim MH; Oliveira AL; Debonsi HM; Venâncio T; Yokoya NS; Fujii MT; Porto AL
    Mar Biotechnol (NY); 2015 Apr; 17(2):211-8. PubMed ID: 25634054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.