These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 32212246)

  • 1. Sustainable Battery Materials from Biomass.
    Liedel C
    ChemSusChem; 2020 May; 13(9):2110-2141. PubMed ID: 32212246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage.
    Kwon G; Ko Y; Kim Y; Kim K; Kang K
    Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achievements, challenges, and perspectives in the design of polymer binders for advanced lithium-ion batteries.
    He Q; Ning J; Chen H; Jiang Z; Wang J; Chen D; Zhao C; Liu Z; Perepichka IF; Meng H; Huang W
    Chem Soc Rev; 2024 Jul; 53(13):7091-7157. PubMed ID: 38845536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustainable Biomass-Derived Carbon Electrodes for Potassium and Aluminum Batteries: Conceptualizing the Key Parameters for Improved Performance.
    Reis GSD; Petnikota S; Subramaniyam CM; de Oliveira HP; Larsson S; Thyrel M; Lassi U; García Alvarado F
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability.
    Chen Y; Wang T; Tian H; Su D; Zhang Q; Wang G
    Adv Mater; 2021 Jul; 33(29):e2003666. PubMed ID: 34096100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Biomass Materials in Zinc-Ion Batteries.
    Zhang Y; Xu M; Jia X; Liu F; Yao J; Hu R; Jiang X; Yu P; Yang H
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Progress in High-Performance Lithium Sulfur Batteries: The Emerging Strategies for Advanced Separators/Electrolytes Based on Nanomaterials and Corresponding Interfaces.
    Wang X; Deng N; Wei L; Yang Q; Xiang H; Wang M; Cheng B; Kang W
    Chem Asian J; 2021 Oct; 16(19):2852-2870. PubMed ID: 34265166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic Effects of Electrodes and Electrolytes in Metal-Sulfur Batteries: Progress and Prospective.
    Zeng L; Zhu J; Chu PK; Huang L; Wang J; Zhou G; Yu XF
    Adv Mater; 2022 Dec; 34(49):e2204636. PubMed ID: 35903947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomass-Derived Materials for Advanced Rechargeable Batteries.
    Wang T; Shi Z; Zhong Y; Ma Y; He J; Zhu Z; Cheng XB; Lu B; Wu Y
    Small; 2024 Nov; 20(45):e2310907. PubMed ID: 39051510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices.
    Chen H; Ling M; Hencz L; Ling HY; Li G; Lin Z; Liu G; Zhang S
    Chem Rev; 2018 Sep; 118(18):8936-8982. PubMed ID: 30133259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomass-Derived Carbon Materials for the Electrode of Metal-Air Batteries.
    Lv X; Chen M; Kimura H; Du W; Yang X
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of biomass materials for advanced lithium-sulfur batteries.
    Yuan H; Liu T; Liu Y; Nai J; Wang Y; Zhang W; Tao X
    Chem Sci; 2019 Aug; 10(32):7484-7495. PubMed ID: 31768234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries.
    Shi Y; Zhou X; Yu G
    Acc Chem Res; 2017 Nov; 50(11):2642-2652. PubMed ID: 28981258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing High Performance Organic Batteries.
    Chen Y; Wang C
    Acc Chem Res; 2020 Nov; 53(11):2636-2647. PubMed ID: 32976710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Progress in Multivalent Metal (Mg, Zn, Ca, and Al) and Metal-Ion Rechargeable Batteries with Organic Materials as Promising Electrodes.
    Xie J; Zhang Q
    Small; 2019 Apr; 15(15):e1805061. PubMed ID: 30848095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries.
    Peng HJ; Huang JQ; Zhang Q
    Chem Soc Rev; 2017 Aug; 46(17):5237-5288. PubMed ID: 28783188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. s-Tetrazines as a New Electrode-Active Material for Secondary Batteries.
    Min DJ; Miomandre F; Audebert P; Kwon JE; Park SY
    ChemSusChem; 2019 Jan; 12(2):503-510. PubMed ID: 30338641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries.
    Chen H; Armand M; Demailly G; Dolhem F; Poizot P; Tarascon JM
    ChemSusChem; 2008; 1(4):348-55. PubMed ID: 18605101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diamino-Substituted Quinones as Cathodes for Lithium-Ion Batteries.
    Hiltermann TW; Sarkar S; Thangadurai V; Sutherland TC
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):8580-8588. PubMed ID: 38320233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.