These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32212337)

  • 1. Analytical calculation of the solvent-accessible surface area and its nuclear gradients by stereographic projection: A general approach for molecules, polymers, nanotubes, helices, and surfaces.
    Vassetti D; Civalleri B; Labat F
    J Comput Chem; 2020 Jun; 41(15):1464-1479. PubMed ID: 32212337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implicit Solvation Using a Generalized Finite-Difference Approach in CRYSTAL: Implementation and Results for Molecules, Polymers, and Surfaces.
    Labat F; Civalleri B; Dovesi R
    J Chem Theory Comput; 2018 Nov; 14(11):5969-5983. PubMed ID: 30347161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalizing Continuum Solvation in Crystal to Nonaqueous Solvents: Implementation, Parametrization, and Application to Molecules and Surfaces.
    Vassetti D; Oǧuz IC; Labat F
    J Chem Theory Comput; 2021 Oct; 17(10):6432-6448. PubMed ID: 34488338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the frozen atom approximation to the GB/SA continuum model for solvation free energy.
    Guvench O; Weiser J; Shenkin P; Kolossváry I; Still WC
    J Comput Chem; 2002 Jan; 23(2):214-21. PubMed ID: 11924735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implicit Solvation Parameters Derived from Explicit Water Forces in Large-Scale Molecular Dynamics Simulations.
    Kleinjung J; Scott WR; Allison JR; van Gunsteren WF; Fraternali F
    J Chem Theory Comput; 2012 Jul; 8(7):2391-2403. PubMed ID: 23180979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvation forces on biomolecular structures: a comparison of explicit solvent and Poisson-Boltzmann models.
    Wagoner J; Baker NA
    J Comput Chem; 2004 Oct; 25(13):1623-9. PubMed ID: 15264256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining the polarizable Drude force field with a continuum electrostatic Poisson-Boltzmann implicit solvation model.
    Aleksandrov A; Lin FY; Roux B; MacKerell AD
    J Comput Chem; 2018 Aug; 39(22):1707-1719. PubMed ID: 29737546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exact analytical algorithm for solvent accessible surface area and derivatives in implicit solvent molecular simulations on GPUs.
    Cao X; Hummel MH; Wang Y; Simmerling C; Coutsias EA
    ArXiv; 2024 Apr; ():. PubMed ID: 38313200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-the-fly Numerical Surface Integration for Finite-Difference Poisson-Boltzmann Methods.
    Cai Q; Ye X; Wang J; Luo R
    J Chem Theory Comput; 2011 Nov; 7(11):3608-3619. PubMed ID: 24772042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the Solute Cavity on the Solvation Energy and its Derivatives within the Framework of the Gaussian Charge Scheme.
    Garcia-Ratés M; Neese F
    J Comput Chem; 2020 Apr; 41(9):922-939. PubMed ID: 31889331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-water interactions in MD simulations: POPS/POPSCOMP solvent accessibility analysis, solvation forces and hydration sites.
    Fornili A; Autore F; Chakroun N; Martinez P; Fraternali F
    Methods Mol Biol; 2012; 819():375-92. PubMed ID: 22183548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges.
    Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exact Analytical Algorithm for the Solvent-Accessible Surface Area and Derivatives in Implicit Solvent Molecular Simulations on GPUs.
    Cao X; Hummel MH; Wang Y; Simmerling C; Coutsias EA
    J Chem Theory Comput; 2024 Jun; 20(11):4456-4468. PubMed ID: 38780181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new analytical method for computing solvent-accessible surface area of macromolecules and its gradients.
    Hayryan S; Hu CK; Skrivánek J; Hayryane E; Pokorný I
    J Comput Chem; 2005 Mar; 26(4):334-43. PubMed ID: 15643653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a fast implicit solvent model for molecular dynamics simulations.
    Ferrara P; Apostolakis J; Caflisch A
    Proteins; 2002 Jan; 46(1):24-33. PubMed ID: 11746700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states.
    Ali SA; Hassan MI; Islam A; Ahmad F
    Curr Protein Pept Sci; 2014; 15(5):456-76. PubMed ID: 24678666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint neighbors approximation of macromolecular solvent accessible surface area.
    Rychkov G; Petukhov M
    J Comput Chem; 2007 Sep; 28(12):1974-89. PubMed ID: 17407094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FACTS: Fast analytical continuum treatment of solvation.
    Haberthür U; Caflisch A
    J Comput Chem; 2008 Apr; 29(5):701-15. PubMed ID: 17918282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rapid solvent accessible surface area estimator for coarse grained molecular simulations.
    Wei S; Brooks CL; Frank AT
    J Comput Chem; 2017 Jun; 38(15):1270-1274. PubMed ID: 28419507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous surface charge polarizable continuum models of solvation. I. General formalism.
    Scalmani G; Frisch MJ
    J Chem Phys; 2010 Mar; 132(11):114110. PubMed ID: 20331284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.