These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 32212373)

  • 1. Electrochemical Energy Storage Electrodes via Citrus Fruits Derived Carbon: A Minireview.
    Ehsani A; Parsimehr H
    Chem Rec; 2020 Aug; 20(8):820-830. PubMed ID: 32212373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical energy storage electrodes from fruit biochar.
    Ehsani A; Parsimehr H
    Adv Colloid Interface Sci; 2020 Oct; 284():102263. PubMed ID: 32966966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corn-based Electrochemical Energy Storage Devices.
    Parsimehr H; Ehsani A
    Chem Rec; 2020 Oct; 20(10):1163-1180. PubMed ID: 32767656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance.
    Achilleos DS; Hatton TA
    J Colloid Interface Sci; 2015 Jun; 447():282-301. PubMed ID: 25711524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the configuration of supercapacitors for maximizing electrochemical performance.
    Zhang J; Zhao XS
    ChemSusChem; 2012 May; 5(5):818-41. PubMed ID: 22550045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-based electrochemical capacitors.
    Ghosh A; Lee YH
    ChemSusChem; 2012 Mar; 5(3):480-99. PubMed ID: 22389329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nature inspired approach to mimic design for increased specific capacitance as supercapacitor electrodes.
    Lee KS; Phiri I; Park CW; Kim S; Ko JM
    J Colloid Interface Sci; 2021 Jun; 592():42-50. PubMed ID: 33639537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid nanostructures for energy storage applications.
    Mohana Reddy AL; Gowda SR; Shaijumon MM; Ajayan PM
    Adv Mater; 2012 Sep; 24(37):5045-64. PubMed ID: 22740354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Citrus-Peel-Derived, Nanoporous Carbon Nanosheets Containing Redox-Active Heteroatoms for Sodium-Ion Storage.
    Kim NR; Yun YS; Song MY; Hong SJ; Kang M; Leal C; Park YW; Jin HJ
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3175-81. PubMed ID: 26754183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-cost, high-performance supercapacitor based on activated carbon electrode materials derived from baobab fruit shells.
    Mohammed AA; Chen C; Zhu Z
    J Colloid Interface Sci; 2019 Mar; 538():308-319. PubMed ID: 30530028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activated carbon derived from melaleuca barks for outstanding high-rate supercapacitors.
    Luo QP; Huang L; Gao X; Cheng Y; Yao B; Hu Z; Wan J; Xiao X; Zhou J
    Nanotechnology; 2015 Jul; 26(30):304004. PubMed ID: 26152815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices.
    Wang X; Liu B; Xiang Q; Wang Q; Hou X; Chen D; Shen G
    ChemSusChem; 2014 Jan; 7(1):308-13. PubMed ID: 24339208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomass-Derived Carbon Materials as Prospective Electrodes for High-Energy Lithium- and Sodium-Ion Capacitors.
    Natarajan S; Lee YS; Aravindan V
    Chem Asian J; 2019 Apr; 14(7):936-951. PubMed ID: 30672661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pumpkin-Derived Porous Carbon for Supercapacitors with High Performance.
    Bai S; Tan G; Li X; Zhao Q; Meng Y; Wang Y; Zhang Y; Xiao D
    Chem Asian J; 2016 Jun; 11(12):1828-36. PubMed ID: 27124360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.
    Yao F; Pham DT; Lee YH
    ChemSusChem; 2015 Jul; 8(14):2284-311. PubMed ID: 26140707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage.
    Fu Y; Cai X; Wu H; Lv Z; Hou S; Peng M; Yu X; Zou D
    Adv Mater; 2012 Nov; 24(42):5713-8. PubMed ID: 22936617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomass-Derived Carbon: A Value-Added Journey Towards Constructing High-Energy Supercapacitors in an Asymmetric Fashion.
    Divya ML; Natarajan S; Lee YS; Aravindan V
    ChemSusChem; 2019 Oct; 12(19):4353-4382. PubMed ID: 31309724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An overview of carbon materials for flexible electrochemical capacitors.
    He Y; Chen W; Gao C; Zhou J; Li X; Xie E
    Nanoscale; 2013 Oct; 5(19):8799-820. PubMed ID: 23934430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon-Based Metal-Free Catalysts for Energy Storage and Environmental Remediation.
    Hu C; Lin Y; Connell JW; Cheng HM; Gogotsi Y; Titirici MM; Dai L
    Adv Mater; 2019 Mar; 31(13):e1806128. PubMed ID: 30687978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research progress in the preparation of lignin-based carbon nanofibers for supercapacitors using electrospinning technology: A review.
    Cao Q; Zhu H; Xu J; Zhang M; Xiao T; Xu S; Du B
    Int J Biol Macromol; 2024 Jul; 273(Pt 2):133037. PubMed ID: 38897523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.