These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 32212641)
1. AutoTuner: High Fidelity and Robust Parameter Selection for Metabolomics Data Processing. McLean C; Kujawinski EB Anal Chem; 2020 Apr; 92(8):5724-5732. PubMed ID: 32212641 [TBL] [Abstract][Full Text] [Related]
2. IPO: a tool for automated optimization of XCMS parameters. Libiseller G; Dvorzak M; Kleb U; Gander E; Eisenberg T; Madeo F; Neumann S; Trausinger G; Sinner F; Pieber T; Magnes C BMC Bioinformatics; 2015 Apr; 16():118. PubMed ID: 25888443 [TBL] [Abstract][Full Text] [Related]
3. Assessment of XCMS Optimization Methods with Machine-Learning Performance. Lassen J; Nielsen KL; Johannsen M; Villesen P Anal Chem; 2021 Oct; 93(40):13459-13466. PubMed ID: 34585906 [TBL] [Abstract][Full Text] [Related]
4. Optimization of XCMS parameters for LC-MS metabolomics: an assessment of automated versus manual tuning and its effect on the final results. Albóniga OE; González O; Alonso RM; Xu Y; Goodacre R Metabolomics; 2020 Jan; 16(1):14. PubMed ID: 31925557 [TBL] [Abstract][Full Text] [Related]
5. Paramounter: Direct Measurement of Universal Parameters To Process Metabolomics Data in a "White Box". Guo J; Shen S; Huan T Anal Chem; 2022 Mar; 94(10):4260-4268. PubMed ID: 35245044 [TBL] [Abstract][Full Text] [Related]
6. Robust and fast nonlinear optimization of diffusion MRI microstructure models. Harms RL; Fritz FJ; Tobisch A; Goebel R; Roebroeck A Neuroimage; 2017 Jul; 155():82-96. PubMed ID: 28457975 [TBL] [Abstract][Full Text] [Related]
7. Automated optimization of XCMS parameters for improved peak picking of liquid chromatography-mass spectrometry data using the coefficient of variation and parameter sweeping for untargeted metabolomics. Manier SK; Keller A; Meyer MR Drug Test Anal; 2019 Jun; 11(6):752-761. PubMed ID: 30479047 [TBL] [Abstract][Full Text] [Related]
8. MetTailor: dynamic block summary and intensity normalization for robust analysis of mass spectrometry data in metabolomics. Chen G; Cui L; Teo GS; Ong CN; Tan CS; Choi H Bioinformatics; 2015 Nov; 31(22):3645-52. PubMed ID: 26220962 [TBL] [Abstract][Full Text] [Related]
9. geoRge: A Computational Tool To Detect the Presence of Stable Isotope Labeling in LC/MS-Based Untargeted Metabolomics. Capellades J; Navarro M; Samino S; Garcia-Ramirez M; Hernandez C; Simo R; Vinaixa M; Yanes O Anal Chem; 2016 Jan; 88(1):621-8. PubMed ID: 26639619 [TBL] [Abstract][Full Text] [Related]
10. Comprehensive evaluation of untargeted metabolomics data processing software in feature detection, quantification and discriminating marker selection. Li Z; Lu Y; Guo Y; Cao H; Wang Q; Shui W Anal Chim Acta; 2018 Oct; 1029():50-57. PubMed ID: 29907290 [TBL] [Abstract][Full Text] [Related]
11. WaveICA: A novel algorithm to remove batch effects for large-scale untargeted metabolomics data based on wavelet analysis. Deng K; Zhang F; Tan Q; Huang Y; Song W; Rong Z; Zhu ZJ; Li K; Li Z Anal Chim Acta; 2019 Jul; 1061():60-69. PubMed ID: 30926040 [TBL] [Abstract][Full Text] [Related]
12. CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests. Ma L; Fan S BMC Bioinformatics; 2017 Mar; 18(1):169. PubMed ID: 28292263 [TBL] [Abstract][Full Text] [Related]
13. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies. Bustad A; Terziivanov D; Leary R; Port R; Schumitzky A; Jelliffe R Clin Pharmacokinet; 2006; 45(4):365-83. PubMed ID: 16584284 [TBL] [Abstract][Full Text] [Related]
14. AlpsNMR: an R package for signal processing of fully untargeted NMR-based metabolomics. Madrid-Gambin F; Oller-Moreno S; Fernandez L; Bartova S; Giner MP; Joyce C; Ferraro F; Montoliu I; Moco S; Marco S Bioinformatics; 2020 May; 36(9):2943-2945. PubMed ID: 31930381 [TBL] [Abstract][Full Text] [Related]
15. PeacoQC: Peak-based selection of high quality cytometry data. Emmaneel A; Quintelier K; Sichien D; Rybakowska P; Marañón C; Alarcón-Riquelme ME; Van Isterdael G; Van Gassen S; Saeys Y Cytometry A; 2022 Apr; 101(4):325-338. PubMed ID: 34549881 [TBL] [Abstract][Full Text] [Related]
16. A Conversation on Data Mining Strategies in LC-MS Untargeted Metabolomics: Pre-Processing and Pre-Treatment Steps. Tugizimana F; Steenkamp PA; Piater LA; Dubery IA Metabolites; 2016 Nov; 6(4):. PubMed ID: 27827887 [TBL] [Abstract][Full Text] [Related]
17. SPSens: a software package for stochastic parameter sensitivity analysis of biochemical reaction networks. Sheppard PW; Rathinam M; Khammash M Bioinformatics; 2013 Jan; 29(1):140-2. PubMed ID: 23104889 [TBL] [Abstract][Full Text] [Related]
18. speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification. Beirnaert C; Meysman P; Vu TN; Hermans N; Apers S; Pieters L; Covaci A; Laukens K PLoS Comput Biol; 2018 Mar; 14(3):e1006018. PubMed ID: 29494588 [TBL] [Abstract][Full Text] [Related]