These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 32212673)

  • 1. Hot Electron Driven Photocatalysis on Plasmon-Resonant Grating Nanostructures.
    Wang Y; Aravind I; Cai Z; Shen L; Gibson GN; Chen J; Wang B; Shi H; Song B; Guignon E; Cady NC; Page WD; Pilar A; Cronin SB
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17459-17465. PubMed ID: 32212673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hot electron-driven photocatalysis and transient absorption spectroscopy in plasmon resonant grating structures.
    Wang Y; Shen L; Wang Y; Hou B; Gibson GN; Poudel N; Chen J; Shi H; Guignon E; Cady NC; Page WD; Pilar A; Dawlaty J; Cronin SB
    Faraday Discuss; 2019 May; 214(0):325-339. PubMed ID: 31049541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoexcited Hot Electron Catalysis in Plasmon-Resonant Grating Structures with Platinum, Nickel, and Ruthenium Coatings.
    Aravind I; Wang YY; Wang Y; Li R; Cai Z; Zhao B; Zhang B; Weng S; Shahriar R; Cronin SB
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):17393-17400. PubMed ID: 38563348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Investigation of Ultrafast Dynamics of Hot Electron-Driven Photocatalysis in Plasmon-Resonant Grating Structures.
    Wang Y; Wang Y; Aravind I; Cai Z; Shen L; Zhang B; Wang B; Chen J; Zhao B; Shi H; Dawlaty JM; Cronin SB
    J Am Chem Soc; 2022 Mar; 144(8):3517-3526. PubMed ID: 35188777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface plasmon polariton-induced hot carrier generation for photocatalysis.
    Ahn W; Ratchford DC; Pehrsson PE; Simpkins BS
    Nanoscale; 2017 Mar; 9(9):3010-3022. PubMed ID: 28182184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.
    Lee H; Park Y; Song K; Park JY
    Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size Dependent Plasmonic Effect on BiVO4 Photoanodes for Solar Water Splitting.
    Zhang L; Herrmann LO; Baumberg JJ
    Sci Rep; 2015 Nov; 5():16660. PubMed ID: 26581942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device.
    Sobhani A; Knight MW; Wang Y; Zheng B; King NS; Brown LV; Fang Z; Nordlander P; Halas NJ
    Nat Commun; 2013; 4():1643. PubMed ID: 23535664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hot Hole Collection and Photoelectrochemical CO
    DuChene JS; Tagliabue G; Welch AJ; Cheng WH; Atwater HA
    Nano Lett; 2018 Apr; 18(4):2545-2550. PubMed ID: 29522350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical analysis of plasmon-resonance absorption in bisinusoidal metal gratings.
    Matsuda T; Zhou D; Okuno Y
    J Opt Soc Am A Opt Image Sci Vis; 2002 Apr; 19(4):695-701. PubMed ID: 11934162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sideways scattering in double resonant plasmonic nanostructures for light harvesting applications.
    Achermann M
    Opt Express; 2016 Dec; 24(26):30234-30244. PubMed ID: 28059299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of plasmon resonance in metal/dielectric nanocavities for high-efficiency photocatalytic device.
    Rajput NS; Shao-Horn Y; Li XH; Kim SG; Jouiad M
    Phys Chem Chem Phys; 2017 Jul; 19(26):16989-16999. PubMed ID: 28597895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined plasmonic gratings in organic solar cells.
    Shen H; Maes B
    Opt Express; 2011 Nov; 19 Suppl 6():A1202-10. PubMed ID: 22109616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical characterization of optical resonance effects in laterally-nanostructured organic photodetectors.
    Schardt J; Gerken M
    Opt Express; 2023 Oct; 31(22):36136-36149. PubMed ID: 38017769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grating-coupled surface plasmon resonance enhanced organic photovoltaic devices induced by Blu-ray disc recordable and Blu-ray disc grating structures.
    Nootchanat S; Pangdam A; Ishikawa R; Wongravee K; Shinbo K; Kato K; Kaneko F; Ekgasit S; Baba A
    Nanoscale; 2017 Apr; 9(15):4963-4971. PubMed ID: 28382341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon Enhanced Internal Photoemission in Antenna-Spacer-Mirror Based Au/TiO₂ Nanostructures.
    Fang Y; Jiao Y; Xiong K; Ogier R; Yang ZJ; Gao S; Dahlin AB; Käll M
    Nano Lett; 2015 Jun; 15(6):4059-65. PubMed ID: 25938263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal.
    Hall AS; Faryad M; Barber GD; Liu L; Erten S; Mayer TS; Lakhtakia A; Mallouk TE
    ACS Nano; 2013 Jun; 7(6):4995-5007. PubMed ID: 23730702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Investigation on Multiple Resonant Modes of Double-Layer Plasmonic Grooves for Sensing Application.
    Chu S; Wang Q; Yu L; Gao H; Liang Y; Peng W
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32054024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-enhanced water splitting on TiO2-passivated GaP photocatalysts.
    Qiu J; Zeng G; Pavaskar P; Li Z; Cronin SB
    Phys Chem Chem Phys; 2014 Feb; 16(7):3115-21. PubMed ID: 24401904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Total absorption of light by lamellar metallic gratings.
    Bonod N; Tayeb G; Maystre D; Enoch S; Popov E
    Opt Express; 2008 Sep; 16(20):15431-8. PubMed ID: 18825179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.