These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 32212696)
21. Expected ozone benefits of reducing nitrogen oxide (NO Vinciguerra T; Bull E; Canty T; He H; Zalewsky E; Woodman M; Aburn G; Ehrman S; Dickerson RR J Air Waste Manag Assoc; 2017 Mar; 67(3):279-291. PubMed ID: 27650304 [TBL] [Abstract][Full Text] [Related]
22. Environmental implications of United States coal exports: a comparative life cycle assessment of future power system scenarios. Bohnengel B; Patiño-Echeverri D; Bergerson J Environ Sci Technol; 2014 Aug; 48(16):9908-16. PubMed ID: 25025127 [TBL] [Abstract][Full Text] [Related]
23. Cost Analysis of Carbon Capture and Sequestration from U.S. Natural Gas-Fired Power Plants. Psarras P; He J; Pilorgé H; McQueen N; Jensen-Fellows A; Kian K; Wilcox J Environ Sci Technol; 2020 May; 54(10):6272-6280. PubMed ID: 32329614 [TBL] [Abstract][Full Text] [Related]
24. Time-Resolved Cost Analysis of Natural Gas Power Plant Conversion to Bioenergy with Carbon Capture and Storage to Support Net-Zero Emissions. Sproul E; Barlow J; Quinn JC Environ Sci Technol; 2020 Dec; 54(23):15338-15346. PubMed ID: 33183006 [TBL] [Abstract][Full Text] [Related]
25. Long-term energy and climate implications of carbon capture and storage deployment strategies in the US coal-fired electricity fleet. Sathre R; Masanet E Environ Sci Technol; 2012 Sep; 46(17):9768-76. PubMed ID: 22857130 [TBL] [Abstract][Full Text] [Related]
26. Performance and Cost Analysis of Natural Gas Combined Cycle Plants with Chemical Looping Combustion. Oh DH; Lee CH; Lee JC ACS Omega; 2021 Aug; 6(32):21043-21058. PubMed ID: 34423212 [TBL] [Abstract][Full Text] [Related]
27. Investigation of aerosol and gas emissions from a coal-fired power plant under various operating conditions. Li Z; Wang Y; Lu Y; Biswas P J Air Waste Manag Assoc; 2019 Jan; 69(1):34-46. PubMed ID: 30047848 [TBL] [Abstract][Full Text] [Related]
28. Low-carbon electricity generation-based dynamic equilibrium strategy for carbon dioxide emissions reduction in the coal-fired power enterprise. Xu J; Feng Q; Lv C; Huang Q Environ Sci Pollut Res Int; 2019 Dec; 26(36):36732-36753. PubMed ID: 31741269 [TBL] [Abstract][Full Text] [Related]
29. Implications of Generation Efficiencies and Supply Chain Leaks for the Life Cycle Greenhouse Gas Emissions of Natural Gas-Fired Electricity in the United States. Tavakkoli S; Feng L; Miller SM; Jordaan SM Environ Sci Technol; 2022 Feb; 56(4):2540-2550. PubMed ID: 35107984 [TBL] [Abstract][Full Text] [Related]
30. Fossil-Fuel Options for Power Sector Net-Zero Emissions with Sequestration Tax Credits. Anderson JJ; Rode DC; Zhai H; Fischbeck PS Environ Sci Technol; 2022 Aug; 56(16):11162-11171. PubMed ID: 35926127 [TBL] [Abstract][Full Text] [Related]
32. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation. Jaramillo P; Griffin WM; Matthews HS Environ Sci Technol; 2007 Sep; 41(17):6290-6. PubMed ID: 17937317 [TBL] [Abstract][Full Text] [Related]
33. Should a coal-fired power plant be replaced or retrofitted? Patiño-Echeverri D; Morel B; Apt J; Chen C Environ Sci Technol; 2007 Dec; 41(23):7980-6. PubMed ID: 18186326 [TBL] [Abstract][Full Text] [Related]
34. Policy-Driven Potential for Deploying Carbon Capture and Sequestration in a Fossil-Rich Power Sector. Dindi A; Coddington K; Garofalo JF; Wu W; Zhai H Environ Sci Technol; 2022 Jul; 56(14):9872-9881. PubMed ID: 35785993 [TBL] [Abstract][Full Text] [Related]
35. Ultra-Low Carbon Emissions from Coal-Fired Power Plants through Bio-Oil Co-Firing and Biochar Sequestration. Dang Q; Mba Wright M; Brown RC Environ Sci Technol; 2015 Dec; 49(24):14688-95. PubMed ID: 26545153 [TBL] [Abstract][Full Text] [Related]
36. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Rao AB; Rubin ES Environ Sci Technol; 2002 Oct; 36(20):4467-75. PubMed ID: 12387425 [TBL] [Abstract][Full Text] [Related]
37. Life cycle emissions and cost of producing electricity from coal, natural gas, and wood pellets in Ontario, Canada. Zhang Y; McKechnie J; Cormier D; Lyng R; Mabee W; Ogino A; Maclean HL Environ Sci Technol; 2010 Jan; 44(1):538-44. PubMed ID: 19961171 [TBL] [Abstract][Full Text] [Related]
38. Technical and Energy Performance of an Advanced, Aqueous Ammonia-Based CO2 Capture Technology for a 500 MW Coal-Fired Power Station. Li K; Yu H; Feron P; Tade M; Wardhaugh L Environ Sci Technol; 2015 Aug; 49(16):10243-52. PubMed ID: 26208135 [TBL] [Abstract][Full Text] [Related]
39. Technoeconomic Assessment of an Advanced Aqueous Ammonia-Based Postcombustion Capture Process Integrated with a 650-MW Coal-Fired Power Station. Li K; Yu H; Yan S; Feron P; Wardhaugh L; Tade M Environ Sci Technol; 2016 Oct; 50(19):10746-10755. PubMed ID: 27611872 [TBL] [Abstract][Full Text] [Related]
40. Water impacts of CO2 emission performance standards for fossil fuel-fired power plants. Talati S; Zhai H; Morgan MG Environ Sci Technol; 2014 Oct; 48(20):11769-76. PubMed ID: 25229670 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]