BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32213359)

  • 21. Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis.
    Wakabayashi T; Hamana M; Mori A; Akiyama R; Ueno K; Osakabe K; Osakabe Y; Suzuki H; Takikawa H; Mizutani M; Sugimoto Y
    Sci Adv; 2019 Dec; 5(12):eaax9067. PubMed ID: 32064317
    [TBL] [Abstract][Full Text] [Related]  

  • 22. LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis.
    Brewer PB; Yoneyama K; Filardo F; Meyers E; Scaffidi A; Frickey T; Akiyama K; Seto Y; Dun EA; Cremer JE; Kerr SC; Waters MT; Flematti GR; Mason MG; Weiller G; Yamaguchi S; Nomura T; Smith SM; Yoneyama K; Beveridge CA
    Proc Natl Acad Sci U S A; 2016 May; 113(22):6301-6. PubMed ID: 27194725
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress.
    Liu J; He H; Vitali M; Visentin I; Charnikhova T; Haider I; Schubert A; Ruyter-Spira C; Bouwmeester HJ; Lovisolo C; Cardinale F
    Planta; 2015 Jun; 241(6):1435-51. PubMed ID: 25716094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Which are the major players, canonical or non-canonical strigolactones?
    Yoneyama K; Xie X; Yoneyama K; Kisugi T; Nomura T; Nakatani Y; Akiyama K; McErlean CSP
    J Exp Bot; 2018 Apr; 69(9):2231-2239. PubMed ID: 29522151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carotenoid cleavage dioxygenase 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus.
    Liu J; Novero M; Charnikhova T; Ferrandino A; Schubert A; Ruyter-Spira C; Bonfante P; Lovisolo C; Bouwmeester HJ; Cardinale F
    J Exp Bot; 2013 Apr; 64(7):1967-81. PubMed ID: 23567864
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi.
    Mori N; Nishiuma K; Sugiyama T; Hayashi H; Akiyama K
    Phytochemistry; 2016 Oct; 130():90-8. PubMed ID: 27264641
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Stereoselective Strigolactone Biosynthesis Catalyzed by a 2-Oxoglutarate-Dependent Dioxygenase in Sorghum.
    Yoda A; Xie X; Yoneyama K; Miura K; McErlean CSP; Nomura T
    Plant Cell Physiol; 2023 Sep; 64(9):1034-1045. PubMed ID: 37307421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genistein-Specific G6DT Gene for the Inducible Production of Wighteone in Lotus japonicus.
    Liu J; Jiang W; Xia Y; Wang X; Shen G; Pang Y
    Plant Cell Physiol; 2018 Jan; 59(1):128-141. PubMed ID: 29140457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative analysis of seven plant hormones in Lotus japonicus using standard addition method.
    Hashiguchi T; Hashiguchi M; Tanaka H; Fukushima K; Gondo T; Akashi R
    PLoS One; 2021; 16(2):e0247276. PubMed ID: 33600422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Establishment of strigolactone-producing bacterium-yeast consortium.
    Wu S; Ma X; Zhou A; Valenzuela A; Zhou K; Li Y
    Sci Adv; 2021 Sep; 7(38):eabh4048. PubMed ID: 34533983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Class I and II NADPH-cytochrome P450 reductases exhibit different roles in triterpenoid biosynthesis in
    Istiandari P; Yasumoto S; Seki H; Fukushima EO; Muranaka T
    Front Plant Sci; 2023; 14():1214602. PubMed ID: 37621889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vestitol as a chemical barrier against intrusion of parasitic plant Striga hermonthica into Lotus japonicus roots.
    Ueda H; Sugimoto Y
    Biosci Biotechnol Biochem; 2010; 74(8):1662-7. PubMed ID: 20699571
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Carbonnel S; Torabi S; Gutjahr C
    Plant Signal Behav; 2021 Jan; 16(1):1840852. PubMed ID: 33126824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Primary and Secondary Metabolites in
    Ranner JL; Schalk S; Martyniak C; Parniske M; Gutjahr C; Stark TD; Dawid C
    J Agric Food Chem; 2023 Aug; 71(30):11277-11303. PubMed ID: 37466334
    [No Abstract]   [Full Text] [Related]  

  • 35. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis.
    Handa Y; Nishide H; Takeda N; Suzuki Y; Kawaguchi M; Saito K
    Plant Cell Physiol; 2015 Aug; 56(8):1490-511. PubMed ID: 26009592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From carotenoids to strigolactones.
    Jia KP; Baz L; Al-Babili S
    J Exp Bot; 2018 Apr; 69(9):2189-2204. PubMed ID: 29253188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus.
    Takeda N; Handa Y; Tsuzuki S; Kojima M; Sakakibara H; Kawaguchi M
    Plant Physiol; 2015 Feb; 167(2):545-57. PubMed ID: 25527715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strigolactone biosynthesis in rice can occur via a 9-cis-3-OH-10'-apo-β-carotenal intermediate.
    Wang JY; Chen GE; Balakrishna A; Jamil M; Berqdar L; Al-Babili S
    FEBS Lett; 2024 Mar; 598(5):571-578. PubMed ID: 38373744
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nutritional and tissue-specific regulation of cytochrome P450 CYP711A MAX1 homologues and strigolactone biosynthesis in wheat.
    Sigalas PP; Buchner P; Thomas SG; Jamois F; Arkoun M; Yvin JC; Bennett MJ; Hawkesford MJ
    J Exp Bot; 2023 Mar; 74(6):1890-1910. PubMed ID: 36626359
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lotus japonicus: a new model to study root-parasitic nematodes.
    Lohar DP; Bird DM
    Plant Cell Physiol; 2003 Nov; 44(11):1176-84. PubMed ID: 14634154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.