These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32213359)

  • 41. Stereospecificity in strigolactone biosynthesis and perception.
    Flematti GR; Scaffidi A; Waters MT; Smith SM
    Planta; 2016 Jun; 243(6):1361-73. PubMed ID: 27105887
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Knockdown of LjALD1, AGD2-like defense response protein 1, influences plant growth and nodulation in Lotus japonicus.
    Chen W; Li X; Tian L; Wu P; Li M; Jiang H; Chen Y; Wu G
    J Integr Plant Biol; 2014 Nov; 56(11):1034-41. PubMed ID: 24797909
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The bioconversion of 5-deoxystrigol to sorgomol by the sorghum, Sorghum bicolor (L.) Moench.
    Motonami N; Ueno K; Nakashima H; Nomura S; Mizutani M; Takikawa H; Sugimoto Y
    Phytochemistry; 2013 Sep; 93():41-8. PubMed ID: 23597492
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Isolation and phenotypic characterization of Lotus japonicus mutants specifically defective in arbuscular mycorrhizal formation.
    Kojima T; Saito K; Oba H; Yoshida Y; Terasawa J; Umehara Y; Suganuma N; Kawaguchi M; Ohtomo R
    Plant Cell Physiol; 2014 May; 55(5):928-41. PubMed ID: 24492255
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Do Phosphate and Cytokinin Interact to Regulate Strigolactone Biosynthesis or Act Independently?
    Yoneyama K; Xie X; Nomura T; Yoneyama K
    Front Plant Sci; 2020; 11():438. PubMed ID: 32508849
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of a Prunus MAX1 homolog as a unique strigol synthase.
    Wu S; Zhou A; Hiugano K; Yoda A; Xie X; Yamane K; Miura K; Nomura T; Li Y
    New Phytol; 2023 Sep; 239(5):1819-1833. PubMed ID: 37292030
    [TBL] [Abstract][Full Text] [Related]  

  • 47.
    Thiergart T; Zgadzaj R; Bozsóki Z; Garrido-Oter R; Radutoiu S; Schulze-Lefert P
    mBio; 2019 Oct; 10(5):. PubMed ID: 31594815
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Strigolactones, how are they synthesized to regulate plant growth and development?
    Yoneyama K; Brewer PB
    Curr Opin Plant Biol; 2021 Oct; 63():102072. PubMed ID: 34198192
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 9-cis-β-Apo-10'-carotenal is the precursor of strigolactones in planta.
    Chen GE; Wang JY; Jamil M; Braguy J; Al-Babili S
    Planta; 2022 Sep; 256(5):88. PubMed ID: 36152118
    [No Abstract]   [Full Text] [Related]  

  • 50. Biosynthesis of rhodiocyanosides in Lotus japonicus: rhodiocyanoside A is synthesized from (Z)-2-methylbutanaloxime via 2-methyl-2-butenenitrile.
    Saito S; Motawia MS; Olsen CE; Møller BL; Bak S
    Phytochemistry; 2012 May; 77():260-7. PubMed ID: 22385904
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recent advances in molecular basis for strigolactone action.
    Yao R; Li J; Xie D
    Sci China Life Sci; 2018 Mar; 61(3):277-284. PubMed ID: 29116554
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Two distinct EIN2 genes cooperatively regulate ethylene signaling in Lotus japonicus.
    Miyata K; Kawaguchi M; Nakagawa T
    Plant Cell Physiol; 2013 Sep; 54(9):1469-77. PubMed ID: 23825220
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent advances in strigolactone research: chemical and biological aspects.
    Seto Y; Kameoka H; Yamaguchi S; Kyozuka J
    Plant Cell Physiol; 2012 Nov; 53(11):1843-53. PubMed ID: 23054391
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Insights into stereoselective ring formation in canonical strigolactone: Identification of a dirigent domain-containing enzyme catalyzing orobanchol synthesis.
    Homma M; Wakabayashi T; Moriwaki Y; Shiotani N; Shigeta T; Isobe K; Okazawa A; Ohta D; Terada T; Shimizu K; Mizutani M; Takikawa H; Sugimoto Y
    Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2313683121. PubMed ID: 38905237
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Large-Scale Phenotyping of Root Traits in the Model Legume Lotus japonicus.
    Giovannetti M; Małolepszy A; Göschl C; Busch W
    Methods Mol Biol; 2017; 1610():155-167. PubMed ID: 28439863
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lotus japonicus Genetic, Mutant, and Germplasm Resources.
    Hashiguchi M; Tanaka H; Muguerza M; Akashi R; Sandal NN; Andersen SU; Sato S
    Curr Protoc Plant Biol; 2018 Jun; 3(2):e20070. PubMed ID: 29927119
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification and expression of strigolactone biosynthesis and signaling genes and the in vitro effects of strigolactones in olive (
    Özbilen A; Sezer F; Taşkin KM
    Plant Direct; 2024 Feb; 8(2):e568. PubMed ID: 38405354
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Integrated multi-omics analysis supports role of lysophosphatidylcholine and related glycerophospholipids in the Lotus japonicus-Glomus intraradices mycorrhizal symbiosis.
    Vijayakumar V; Liebisch G; Buer B; Xue L; Gerlach N; Blau S; Schmitz J; Bucher M
    Plant Cell Environ; 2016 Feb; 39(2):393-415. PubMed ID: 26297195
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Abscisic acid influences tillering by modulation of strigolactones in barley.
    Wang H; Chen W; Eggert K; Charnikhova T; Bouwmeester H; Schweizer P; Hajirezaei MR; Seiler C; Sreenivasulu N; von Wirén N; Kuhlmann M
    J Exp Bot; 2018 Jul; 69(16):3883-3898. PubMed ID: 29982677
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bioconversion of 5-deoxystrigol stereoisomers to monohydroxylated strigolactones by plants.
    Ueno K; Nakashima H; Mizutani M; Takikawa H; Sugimoto Y
    J Pestic Sci; 2018 Aug; 43(3):198-206. PubMed ID: 30363087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.