These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 32213545)

  • 1. Defining the Specific Pathogen-Free State of
    Hensley CL; Bowes KM; Feldman SH
    Cold Spring Harb Protoc; 2020 Oct; 2020(10):. PubMed ID: 32213545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Newly identified Mycobacterium species in a Xenopus laevis colony.
    Godfrey D; Williamson H; Silverman J; Small PL
    Comp Med; 2007 Feb; 57(1):97-104. PubMed ID: 17348297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xenopus laevis and Emerging Amphibian Pathogens in Chile.
    Soto-Azat C; Peñafiel-Ricaurte A; Price SJ; Sallaberry-Pincheira N; García MP; Alvarado-Rybak M; Cunningham AA
    Ecohealth; 2016 Dec; 13(4):775-783. PubMed ID: 27682604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inflammation-induced reactivation of the ranavirus Frog Virus 3 in asymptomatic Xenopus laevis.
    Robert J; Grayfer L; Edholm ES; Ward B; De Jesús Andino F
    PLoS One; 2014; 9(11):e112904. PubMed ID: 25390636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xenopus laevis: a possible vector of Ranavirus infection?
    Robert J; Abramowitz L; Gantress J; Morales HD
    J Wildl Dis; 2007 Oct; 43(4):645-52. PubMed ID: 17984259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of primary and memory CD8 T-cell responses against ranavirus (FV3) in Xenopus laevis.
    Morales HD; Robert J
    J Virol; 2007 Mar; 81(5):2240-8. PubMed ID: 17182687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partial validation of a TaqMan real-time quantitative PCR for the detection of ranaviruses.
    Stilwell NK; Whittington RJ; Hick PM; Becker JA; Ariel E; van Beurden S; Vendramin N; Olesen NJ; Waltzek TB
    Dis Aquat Organ; 2018 May; 128(2):105-116. PubMed ID: 29733025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantitative-PCR based method to estimate ranavirus viral load following normalisation by reference to an ultraconserved vertebrate target.
    Leung WTM; Thomas-Walters L; Garner TWJ; Balloux F; Durrant C; Price SJ
    J Virol Methods; 2017 Nov; 249():147-155. PubMed ID: 28844932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mycobacterium gordonae infection in a colony of African clawed frogs (Xenopus tropicalis).
    Sánchez-Morgado JM; Gallagher A; Johnson LK
    Lab Anim; 2009 Jul; 43(3):300-3. PubMed ID: 19237452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Innate immune responses and permissiveness to ranavirus infection of peritoneal leukocytes in the frog Xenopus laevis.
    Morales HD; Abramowitz L; Gertz J; Sowa J; Vogel A; Robert J
    J Virol; 2010 May; 84(10):4912-22. PubMed ID: 20200236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlamydia pneumoniae infection in a breeding colony of African clawed frogs (Xenopus tropicalis).
    Reed KD; Ruth GR; Meyer JA; Shukla SK
    Emerg Infect Dis; 2000; 6(2):196-9. PubMed ID: 10756157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prominent amphibian (Xenopus laevis) tadpole type III interferon response to the frog virus 3 ranavirus.
    Grayfer L; De Jesús Andino F; Robert J
    J Virol; 2015 May; 89(9):5072-82. PubMed ID: 25717104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA microarray-based detection of multiple pathogens: Mycoplasma spp. and Chlamydia spp.
    Schnee C; Sachse K
    Methods Mol Biol; 2015; 1247():193-208. PubMed ID: 25399098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cutaneous acariasis in the African clawed frog (Xenopus laevis).
    Ford TR; Dillehay DL; Mook DM
    Comp Med; 2004 Dec; 54(6):713-7. PubMed ID: 15679271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of available cover and feeding schedule on the behavior and growth of the juvenile African clawed frog (Xenopus laevis).
    Gouchie GM; Roberts LF; Wassersug RJ
    Lab Anim (NY); 2008 Apr; 37(4):165-9. PubMed ID: 18356916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time polymerase chain reaction testing for the detection of Mycobacterium genavense and Mycobacterium avium complex species in avian samples.
    Tell LA; Leutenegger CM; Larsen RS; Agnew DW; Keener L; Needham ML; Rideout BA
    Avian Dis; 2003; 47(4):1406-15. PubMed ID: 14708989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epistylididae ectoparasites in a colony of African clawed frogs (Xenopus laevis).
    Pritchett KR; Sanders GE
    J Am Assoc Lab Anim Sci; 2007 Mar; 46(2):86-91. PubMed ID: 17343359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Mycobacterium gordonae as potential cause of granulomatous lesions of the toe tips in the South African clawed frog (Xenopus laevis)].
    Kirsch P; Nusser P; Hotzel H; Moser I
    Berl Munch Tierarztl Wochenschr; 2008; 121(7-8):270-7. PubMed ID: 18712263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlamydiae in free-ranging and captive frogs in Switzerland.
    Blumer C; Zimmermann DR; Weilenmann R; Vaughan L; Pospischil A
    Vet Pathol; 2007 Mar; 44(2):144-50. PubMed ID: 17317791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amphibian (Xenopus laevis) tadpoles and adult frogs mount distinct interferon responses to the Frog Virus 3 ranavirus.
    Wendel ES; Yaparla A; Koubourli DV; Grayfer L
    Virology; 2017 Mar; 503():12-20. PubMed ID: 28081430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.