BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 32213585)

  • 1. Dynamics of oligomer and amyloid fibril formation by yeast prion Sup35 observed by high-speed atomic force microscopy.
    Konno H; Watanabe-Nakayama T; Uchihashi T; Okuda M; Zhu L; Kodera N; Kikuchi Y; Ando T; Taguchi H
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7831-7836. PubMed ID: 32213585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clustering and Fibril Formation during GNNQQNY Aggregation: A Molecular Dynamics Study.
    Szała-Mendyk B; Molski A
    Biomolecules; 2020 Sep; 10(10):. PubMed ID: 32987720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo evidence for the fibrillar structures of Sup35 prions in yeast cells.
    Kawai-Noma S; Pack CG; Kojidani T; Asakawa H; Hiraoka Y; Kinjo M; Haraguchi T; Taguchi H; Hirata A
    J Cell Biol; 2010 Jul; 190(2):223-31. PubMed ID: 20643880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amyloid fibrils embodying distinctive yeast prion phenotypes exhibit diverse morphologies.
    Ghosh R; Dong J; Wall J; Frederick KK
    FEMS Yeast Res; 2018 Sep; 18(6):. PubMed ID: 29846554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sup35NMp morphology evaluation on Au, Si, formvar and mica surfaces using AFM, SEM and TEM.
    Sokolov PA; Bondarev SA; Belousov MV; Zhouravleva GA; Kasyanenko NA
    J Struct Biol; 2018 Jan; 201(1):5-14. PubMed ID: 29078994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amyloid formation characteristics of GNNQQNY from yeast prion protein Sup35 and its seeding with heterogeneous polypeptides.
    Haratake M; Takiguchi T; Masuda N; Yoshida S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2017 Jan; 149():72-79. PubMed ID: 27736724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fluorescent mutant of the NM domain of the yeast prion Sup35 provides insight into fibril formation and stability.
    Palhano FL; Rocha CB; Bernardino A; Weissmuller G; Masuda CA; Montero-Lomelí M; Gomes AM; Chien P; Fernandes PM; Foguel D
    Biochemistry; 2009 Jul; 48(29):6811-23. PubMed ID: 19530740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast prion protein New1 can break Sup35 amyloid fibrils into fragments in an ATP-dependent manner.
    Inoue Y; Kawai-Noma S; Koike-Takeshita A; Taguchi H; Yoshida M
    Genes Cells; 2011 May; 16(5):545-56. PubMed ID: 21453424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of monomer arrangement in the amyloid self-assembly.
    Portillo A; Hashemi M; Zhang Y; Breydo L; Uversky VN; Lyubchenko YL
    Biochim Biophys Acta; 2015 Mar; 1854(3):218-28. PubMed ID: 25542374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of divalent copper, manganese and zinc ions on fibril nucleation and elongation of the amyloid-like yeast prion determinant Sup35p-NM.
    Suhre MH; Hess S; Golser AV; Scheibel T
    J Inorg Biochem; 2009 Dec; 103(12):1711-20. PubMed ID: 19853305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The physical dimensions of amyloid aggregates control their infective potential as prion particles.
    Marchante R; Beal DM; Koloteva-Levine N; Purton TJ; Tuite MF; Xue WF
    Elife; 2017 Sep; 6():. PubMed ID: 28880146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct proof of the amyloid nature of yeast prions [PSI+] and [PIN+] by the method of immunoprecipitation of native fibrils.
    Sergeeva AV; Belashova TA; Bondarev SA; Velizhanina ME; Barbitoff YA; Matveenko AG; Valina AA; Simanova AL; Zhouravleva GA; Galkin AP
    FEMS Yeast Res; 2021 Sep; 21(6):. PubMed ID: 34463335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prion induction involves an ancient system for the sequestration of aggregated proteins and heritable changes in prion fragmentation.
    Tyedmers J; Treusch S; Dong J; McCaffery JM; Bevis B; Lindquist S
    Proc Natl Acad Sci U S A; 2010 May; 107(19):8633-8. PubMed ID: 20421488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy.
    Langkilde AE; Morris KL; Serpell LC; Svergun DI; Vestergaard B
    Acta Crystallogr D Biol Crystallogr; 2015 Apr; 71(Pt 4):882-95. PubMed ID: 25849399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for stepwise formation of amyloid fibrils by the mouse prion protein.
    Jain S; Udgaonkar JB
    J Mol Biol; 2008 Oct; 382(5):1228-41. PubMed ID: 18687339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast Sup35 Prion Structure: Two Types, Four Parts, Many Variants.
    Dergalev AA; Alexandrov AI; Ivannikov RI; Ter-Avanesyan MD; Kushnirov VV
    Int J Mol Sci; 2019 May; 20(11):. PubMed ID: 31146333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life cycle of yeast prions: propagation mediated by amyloid fibrils.
    Inoue Y
    Protein Pept Lett; 2009; 16(3):271-6. PubMed ID: 19275740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amyloid oligomers: diffuse oligomer-based transmission of yeast prions.
    Taguchi H; Kawai-Noma S
    FEBS J; 2010 Mar; 277(6):1359-68. PubMed ID: 20148963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Sup35p filaments (the [PSI+] prion), the globular C-terminal domains are widely offset from the amyloid fibril backbone.
    Baxa U; Keller PW; Cheng N; Wall JS; Steven AC
    Mol Microbiol; 2011 Jan; 79(2):523-32. PubMed ID: 21219467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical trapping with high forces reveals unexpected behaviors of prion fibrils.
    Dong J; Castro CE; Boyce MC; Lang MJ; Lindquist S
    Nat Struct Mol Biol; 2010 Dec; 17(12):1422-30. PubMed ID: 21113168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.