These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 32213626)
1. Histone Deacetylase Inhibitors and IL21 Cooperate to Reprogram Human Effector CD8 Wang J; Hasan F; Frey AC; Li HS; Park J; Pan K; Haymaker C; Bernatchez C; Lee DA; Watowich SS; Yee C Cancer Immunol Res; 2020 Jun; 8(6):794-805. PubMed ID: 32213626 [TBL] [Abstract][Full Text] [Related]
2. A short CD3/CD28 costimulation combined with IL-21 enhance the generation of human memory stem T cells for adoptive immunotherapy. Alvarez-Fernández C; Escribà-Garcia L; Vidal S; Sierra J; Briones J J Transl Med; 2016 Jul; 14(1):214. PubMed ID: 27435312 [TBL] [Abstract][Full Text] [Related]
3. Enhanced local and systemic anti-melanoma CD8+ T cell responses after memory T cell-based adoptive immunotherapy in mice. Contreras A; Sen S; Tatar AJ; Mahvi DA; Meyers JV; Srinand P; Suresh M; Cho CS Cancer Immunol Immunother; 2016 May; 65(5):601-11. PubMed ID: 27011014 [TBL] [Abstract][Full Text] [Related]
4. Co-stimulation through 4-1BB/CD137 improves the expansion and function of CD8(+) melanoma tumor-infiltrating lymphocytes for adoptive T-cell therapy. Chacon JA; Wu RC; Sukhumalchandra P; Molldrem JJ; Sarnaik A; Pilon-Thomas S; Weber J; Hwu P; Radvanyi L PLoS One; 2013; 8(4):e60031. PubMed ID: 23560068 [TBL] [Abstract][Full Text] [Related]
5. Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Powell DJ; Dudley ME; Robbins PF; Rosenberg SA Blood; 2005 Jan; 105(1):241-50. PubMed ID: 15345595 [TBL] [Abstract][Full Text] [Related]
6. 4-1BB is superior to CD28 costimulation for generating CD8+ cytotoxic lymphocytes for adoptive immunotherapy. Zhang H; Snyder KM; Suhoski MM; Maus MV; Kapoor V; June CH; Mackall CL J Immunol; 2007 Oct; 179(7):4910-8. PubMed ID: 17878391 [TBL] [Abstract][Full Text] [Related]
7. Interrupting CD28 costimulation before antigen rechallenge affects CD8(+) T-cell expansion and effector functions during secondary response in mice. Fröhlich M; Gogishvili T; Langenhorst D; Lühder F; Hünig T Eur J Immunol; 2016 Jul; 46(7):1644-55. PubMed ID: 27122236 [TBL] [Abstract][Full Text] [Related]
8. Phenotypic and functional attributes of lentivirus-modified CD19-specific human CD8+ central memory T cells manufactured at clinical scale. Wang X; Naranjo A; Brown CE; Bautista C; Wong CW; Chang WC; Aguilar B; Ostberg JR; Riddell SR; Forman SJ; Jensen MC J Immunother; 2012; 35(9):689-701. PubMed ID: 23090078 [TBL] [Abstract][Full Text] [Related]
9. Engraftment of human central memory-derived effector CD8+ T cells in immunodeficient mice. Wang X; Berger C; Wong CW; Forman SJ; Riddell SR; Jensen MC Blood; 2011 Feb; 117(6):1888-98. PubMed ID: 21123821 [TBL] [Abstract][Full Text] [Related]
10. IL-21 preferentially enhances IL-15-mediated homeostatic proliferation of human CD28+ CD8 memory T cells throughout the adult age span. Nguyen H; Weng NP J Leukoc Biol; 2010 Jan; 87(1):43-9. PubMed ID: 19797296 [TBL] [Abstract][Full Text] [Related]
11. Genetic modification of T cells with IL-21 enhances antigen presentation and generation of central memory tumor-specific cytotoxic T-lymphocytes. Kaka AS; Shaffer DR; Hartmaier R; Leen AM; Lu A; Bear A; Rooney CM; Foster AE J Immunother; 2009 Sep; 32(7):726-36. PubMed ID: 19561536 [TBL] [Abstract][Full Text] [Related]
12. Adoptive transfer of murine T cells expressing a chimeric-PD1-Dap10 receptor as an immunotherapy for lymphoma. Lynch A; Hawk W; Nylen E; Ober S; Autin P; Barber A Immunology; 2017 Nov; 152(3):472-483. PubMed ID: 28670716 [TBL] [Abstract][Full Text] [Related]
13. Ex vivo expansion of tumor specific lymphocytes with IL-15 and IL-21 for adoptive immunotherapy in melanoma. Huarte E; Fisher J; Turk MJ; Mellinger D; Foster C; Wolf B; Meehan KR; Fadul CE; Ernstoff MS Cancer Lett; 2009 Nov; 285(1):80-8. PubMed ID: 19501956 [TBL] [Abstract][Full Text] [Related]
14. Priming CD8+ T cells with dendritic cells matured using TLR4 and TLR7/8 ligands together enhances generation of CD8+ T cells retaining CD28. Pufnock JS; Cigal M; Rolczynski LS; Andersen-Nissen E; Wolfl M; McElrath MJ; Greenberg PD Blood; 2011 Jun; 117(24):6542-51. PubMed ID: 21493800 [TBL] [Abstract][Full Text] [Related]
15. Four functionally distinct populations of human effector-memory CD8+ T lymphocytes. Romero P; Zippelius A; Kurth I; Pittet MJ; Touvrey C; Iancu EM; Corthesy P; Devevre E; Speiser DE; Rufer N J Immunol; 2007 Apr; 178(7):4112-9. PubMed ID: 17371966 [TBL] [Abstract][Full Text] [Related]
16. Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Hinrichs CS; Borman ZA; Gattinoni L; Yu Z; Burns WR; Huang J; Klebanoff CA; Johnson LA; Kerkar SP; Yang S; Muranski P; Palmer DC; Scott CD; Morgan RA; Robbins PF; Rosenberg SA; Restifo NP Blood; 2011 Jan; 117(3):808-14. PubMed ID: 20971955 [TBL] [Abstract][Full Text] [Related]
17. Ex vivo culture of chimeric antigen receptor T cells generates functional CD8+ T cells with effector and central memory-like phenotype. Neeson P; Shin A; Tainton KM; Guru P; Prince HM; Harrison SJ; Peinert S; Smyth MJ; Trapani JA; Kershaw MH; Darcy PK; Ritchie DS Gene Ther; 2010 Sep; 17(9):1105-16. PubMed ID: 20428216 [TBL] [Abstract][Full Text] [Related]
18. Selective CD28 blockade attenuates CTLA-4-dependent CD8+ memory T cell effector function and prolongs graft survival. Liu D; Badell IR; Ford ML JCI Insight; 2018 Jan; 3(1):. PubMed ID: 29321374 [TBL] [Abstract][Full Text] [Related]
19. Peripheral human CD8(+)CD28(+)T lymphocytes give rise to CD28(-)progeny, but IL-4 prevents loss of CD28 expression. Labalette M; Leteurtre E; Thumerelle C; Grutzmacher C; Tourvieille B; Dessaint JP Int Immunol; 1999 Aug; 11(8):1327-36. PubMed ID: 10421790 [TBL] [Abstract][Full Text] [Related]
20. CD70 signaling is critical for CD28-independent CD8+ T cell-mediated alloimmune responses in vivo. Yamada A; Salama AD; Sho M; Najafian N; Ito T; Forman JP; Kewalramani R; Sandner S; Harada H; Clarkson MR; Mandelbrot DA; Sharpe AH; Oshima H; Yagita H; Chalasani G; Lakkis FG; Auchincloss H; Sayegh MH J Immunol; 2005 Feb; 174(3):1357-64. PubMed ID: 15661893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]