These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32213943)

  • 1. Theoretical Insights into the Structures and Capacitive Performances of Confined Ionic Liquids.
    Yang J; Ding Y; Lian C; Ying S; Liu H
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32213943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes.
    Vatamanu J; Vatamanu M; Bedrov D
    ACS Nano; 2015 Jun; 9(6):5999-6017. PubMed ID: 26038979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes?
    Lian C; Liu H; Henderson D; Wu J
    J Phys Condens Matter; 2016 Oct; 28(41):414005. PubMed ID: 27546561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Influence of Anion Shape on the Electrical Double Layer Microstructure and Capacitance of Ionic Liquids-Based Supercapacitors by Molecular Simulations.
    Chen M; Li S; Feng G
    Molecules; 2017 Feb; 22(2):. PubMed ID: 28212336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscopic Insights into the Electrochemical Behavior of Nonaqueous Electrolytes in Electric Double-Layer Capacitors.
    Jiang DE; Wu J
    J Phys Chem Lett; 2013 Apr; 4(8):1260-7. PubMed ID: 26282139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanopatterning of Electrode Surfaces as a Potential Route to Improve the Energy Density of Electric Double-Layer Capacitors: Insight from Molecular Simulations.
    Xing L; Vatamanu J; Smith GD; Bedrov D
    J Phys Chem Lett; 2012 May; 3(9):1124-9. PubMed ID: 26288046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biredox ionic liquids: new opportunities toward high performance supercapacitors.
    Bodin C; Mourad E; Zigah D; Le Vot S; Freunberger SA; Favier F; Fontaine O
    Faraday Discuss; 2018 Jan; 206():393-404. PubMed ID: 28936498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Dynamics Simulation Study of the Capacitive Performance of a Binary Mixture of Ionic Liquids near an Onion-like Carbon Electrode.
    Li S; Feng G; Fulvio PF; Hillesheim PC; Liao C; Dai S; Cummings PT
    J Phys Chem Lett; 2012 Sep; 3(17):2465-9. PubMed ID: 26292134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes.
    Bi S; Banda H; Chen M; Niu L; Chen M; Wu T; Wang J; Wang R; Feng J; Chen T; Dincă M; Kornyshev AA; Feng G
    Nat Mater; 2020 May; 19(5):552-558. PubMed ID: 32015536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on Possible Ion-Confinement in Nanopore for Enhanced Supercapacitor Performance in 4V EMIBF
    Deng J; Li J; Xiao Z; Song S; Li L
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31766673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A "counter-charge layer in generalized solvents" framework for electrical double layers in neat and hybrid ionic liquid electrolytes.
    Feng G; Huang J; Sumpter BG; Meunier V; Qiao R
    Phys Chem Chem Phys; 2011 Aug; 13(32):14723-34. PubMed ID: 21755079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does capillary evaporation limit the accessibility of nonaqueous electrolytes to the ultrasmall pores of carbon electrodes?
    Liu K; Zhang P; Wu J
    J Chem Phys; 2018 Dec; 149(23):234708. PubMed ID: 30579302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex capacitance scaling in ionic liquids-filled nanopores.
    Wu P; Huang J; Meunier V; Sumpter BG; Qiao R
    ACS Nano; 2011 Nov; 5(11):9044-51. PubMed ID: 22017626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electrochemical in situ study of freezing and thawing of ionic liquids in carbon nanopores.
    Weingarth D; Drumm R; Foelske-Schmitz A; Kötz R; Presser V
    Phys Chem Chem Phys; 2014 Oct; 16(39):21219-24. PubMed ID: 25201074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors.
    Dou Q; Liu L; Yang B; Lang J; Yan X
    Nat Commun; 2017 Dec; 8(1):2188. PubMed ID: 29259171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry.
    Richey FW; Dyatkin B; Gogotsi Y; Elabd YA
    J Am Chem Soc; 2013 Aug; 135(34):12818-26. PubMed ID: 23915377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Insights into Materials and Interfaces for Capacitive Energy Storage.
    Zhan C; Lian C; Zhang Y; Thompson MW; Xie Y; Wu J; Kent PRC; Cummings PT; Jiang DE; Wesolowski DJ
    Adv Sci (Weinh); 2017 Jul; 4(7):1700059. PubMed ID: 28725531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-dependent density functional theory for the charging kinetics of electric double layer containing room-temperature ionic liquids.
    Lian C; Zhao S; Liu H; Wu J
    J Chem Phys; 2016 Nov; 145(20):204707. PubMed ID: 27908139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR Study of Ion Dynamics and Charge Storage in Ionic Liquid Supercapacitors.
    Forse AC; Griffin JM; Merlet C; Bayley PM; Wang H; Simon P; Grey CP
    J Am Chem Soc; 2015 Jun; 137(22):7231-42. PubMed ID: 25973552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.