These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32213988)

  • 1. Analysis and Compensation of Bias Drift for a Micromachined Spinning-rotor Gyroscope with Electrostatic Suspension.
    Wang S; Han F
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32213988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoupling Control of Micromachined Spinning-Rotor Gyroscope with Electrostatic Suspension.
    Sun B; Wang S; Li H; He X
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27775624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spin Rate Effects in a Micromachined Electrostatically Suspended Gyroscope.
    Sun B; Wang S; Tan Y; Liu Y; Han F
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30424573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of micromachined gyroscope structure and circuitry technology.
    Xia D; Yu C; Kong L
    Sensors (Basel); 2014 Jan; 14(1):1394-473. PubMed ID: 24424468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Rotational Gyroscope with a Water-Film Bearing Based on Magnetic Self-Restoring Effect.
    Chen D; Liu X; Zhang H; Li H; Weng R; Li L; Rong W; Zhang Z
    Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29385105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Temperature Drift Suppression Method of Mode-Matched MEMS Gyroscope Based on a Combination of Mode Reversal and Multiple Regression.
    Chen L; Miao T; Li Q; Wang P; Wu X; Xi X; Xiao D
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Landmark-Based Drift Compensation Algorithm for Inertial Pedestrian Navigation.
    Diaz EM; Caamano M; Sánchez FJF
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28671622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An adaptive compensation algorithm for temperature drift of micro-electro-mechanical systems gyroscopes using a strong tracking Kalman filter.
    Feng Y; Li X; Zhang X
    Sensors (Basel); 2015 May; 15(5):11222-38. PubMed ID: 25985165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Friction Reduction for a Rotational Gyroscope with Mechanical Support by Fabrication of a Biomimetic Superhydrophobic Surface on a Ball-Disk Shaped Rotor and the Application of a Water Film Bearing.
    Chen D; Liu X; Zhang H; Li H; Weng R; Li L; Zhang Z
    Micromachines (Basel); 2017 Jul; 8(7):. PubMed ID: 30400413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and Compensation of Random Drift of MEMS Gyroscopes Based on Least Squares Support Vector Machine Optimized by Chaotic Particle Swarm Optimization.
    Xing H; Hou B; Lin Z; Guo M
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29027952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Quadrature Control Mode on ZRO Drift of MEMS Gyroscope and Online Compensation Method.
    Bu F; Guo S; Fan B; Wang Y
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consideration of Thermo-Vacuum Stability of a MEMS Gyroscope for Space Applications.
    Liu J; Fu M; Meng C; Li J; Li K; Hu J; Chen X
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33333719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature Compensation Method Based on an Improved Firefly Algorithm Optimized Backpropagation Neural Network for Micromachined Silicon Resonant Accelerometers.
    Huang L; Jiang L; Zhao L; Ding X
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of Ring Laser Gyroscope Bias Compensation Algorithm in Variable Temperature Environment.
    Weng J; Bian X; Kou K; Lian T
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated thermal compensation system for MEMS inertial sensors.
    Chiu SR; Teng LT; Chao JW; Sue CY; Lin CH; Chen HR; Su YK
    Sensors (Basel); 2014 Mar; 14(3):4290-311. PubMed ID: 24599191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Improved Wavelet Thresholding Method and an RBF Network in the Error Compensating of an MEMS Gyroscope.
    Sheng G; Gao G; Zhang B
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31540303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MEMS Gyroscope Temperature Compensation Based on Drive Mode Vibration Characteristic Control.
    Cui M; Huang Y; Wang W; Cao H
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 31013981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of axial force on the performance of micromachined vibratory rate gyroscopes.
    Hou Z; Xiao D; Wu X; Dong P; Chen Z; Niu Z; Zhang X
    Sensors (Basel); 2011; 11(1):296-309. PubMed ID: 22346578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Locking Avoidance and Stiffness Compensation of a Three-Axis Micromachined Electrostatically Suspended Accelerometer.
    Yin Y; Sun B; Han F
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27213376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 0.04 degree-per-hour MEMS disk resonator gyroscope with high-quality factor (510 k) and long decaying time constant (74.9 s).
    Li Q; Xiao D; Zhou X; Xu Y; Zhuo M; Hou Z; He K; Zhang Y; Wu X
    Microsyst Nanoeng; 2018; 4():32. PubMed ID: 31057920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.