BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 32214017)

  • 1. Cancer Diagnosis through SERS and Other Related Techniques.
    Blanco-Formoso M; Alvarez-Puebla RA
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32214017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoplasmonic sensors for detecting circulating cancer biomarkers.
    Ferhan AR; Jackman JA; Park JH; Cho NJ; Kim DH
    Adv Drug Deliv Rev; 2018 Feb; 125():48-77. PubMed ID: 29247763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct and Label-Free Detection of MicroRNA Cancer Biomarkers using SERS-Based Plasmonic Coupling Interference (PCI) Nanoprobes.
    Wang HN; Crawford BM; Norton SJ; Vo-Dinh T
    J Phys Chem B; 2019 Dec; 123(48):10245-10251. PubMed ID: 31710234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Progress on Liquid Biopsy Analysis using Surface-Enhanced Raman Spectroscopy.
    Zhang Y; Mi X; Tan X; Xiang R
    Theranostics; 2019; 9(2):491-525. PubMed ID: 30809289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deformable nanoplasmonic membrane reveals universal correlations between plasmon resonance and surface enhanced Raman scattering.
    Kang M; Kim JJ; Oh YJ; Park SG; Jeong KH
    Adv Mater; 2014 Jul; 26(26):4510-4. PubMed ID: 24668875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman spectroscopy using plasmonic and carbon-based nanoparticles for cancer detection, diagnosis, and treatment guidance.Part 1: Diagnosis.
    Darrigues E; Nima ZA; Majeed W; Vang-Dings KB; Dantuluri V; Biris AR; Zharov VP; Griffin RJ; Biris AS
    Drug Metab Rev; 2017 May; 49(2):212-252. PubMed ID: 28264609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Nanoparticle-Enhanced Optical Techniques for Cancer Biomarker Sensing.
    Fu L; Lin CT; Karimi-Maleh H; Chen F; Zhao S
    Biosensors (Basel); 2023 Nov; 13(11):. PubMed ID: 37998152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beehive-Inspired Macroporous SERS Probe for Cancer Detection through Capturing and Analyzing Exosomes in Plasma.
    Dong S; Wang Y; Liu Z; Zhang W; Yi K; Zhang X; Zhang X; Jiang C; Yang S; Wang F; Xiao X
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):5136-5146. PubMed ID: 31894690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic nanosensors for pharmaceutical and biomedical analysis.
    Akgönüllü S; Denizli A
    J Pharm Biomed Anal; 2023 Nov; 236():115671. PubMed ID: 37659267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman spectroscopy using plasmonic and carbon-based nanoparticles for cancer detection, diagnosis, and treatment guidance. Part 2: Treatment.
    Darrigues E; Dantuluri V; Nima ZA; Vang-Dings KB; Griffin RJ; Biris AR; Ghosh A; Biris AS
    Drug Metab Rev; 2017 May; 49(2):253-283. PubMed ID: 28298144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensing of circulating cancer biomarkers with metal nanoparticles.
    Pallares RM; Thanh NTK; Su X
    Nanoscale; 2019 Nov; 11(46):22152-22171. PubMed ID: 31555790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS).
    Meyer SA; Le Ru EC; Etchegoin PG
    Anal Chem; 2011 Mar; 83(6):2337-44. PubMed ID: 21322587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correct spectral conversion between surface-enhanced raman and plasmon resonance scattering from nanoparticle dimers for single-molecule detection.
    Lee K; Irudayaraj J
    Small; 2013 Apr; 9(7):1106-15. PubMed ID: 23281179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs.
    Kasera S; Biedermann F; Baumberg JJ; Scherman OA; Mahajan S
    Nano Lett; 2012 Nov; 12(11):5924-8. PubMed ID: 23088754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-Enhanced Raman Scattering-Based Immunoassay Technologies for Detection of Disease Biomarkers.
    Smolsky J; Kaur S; Hayashi C; Batra SK; Krasnoslobodtsev AV
    Biosensors (Basel); 2017 Jan; 7(1):. PubMed ID: 28085088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical porous plasmonic metamaterials for reproducible ultrasensitive surface-enhanced Raman spectroscopy.
    Zhang X; Zheng Y; Liu X; Lu W; Dai J; Lei DY; MacFarlane DR
    Adv Mater; 2015 Feb; 27(6):1090-6. PubMed ID: 25534763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-enhanced Raman spectroscopy.
    Stiles PL; Dieringer JA; Shah NC; Van Duyne RP
    Annu Rev Anal Chem (Palo Alto Calif); 2008; 1():601-26. PubMed ID: 20636091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer diagnosis using label-free SERS-based exosome analysis.
    Liu Y; Li M; Liu H; Kang C; Wang C
    Theranostics; 2024; 14(5):1966-1981. PubMed ID: 38505618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 'Switch-off' biosensing for chymotrypsin-catalyzed reaction by SPR-SERS spectroscopy.
    Fu C; Xu W; Chen G; Xu S
    Analyst; 2013 Nov; 138(21):6282-6. PubMed ID: 24045432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.