These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32214042)

  • 1. Analysis of One-Dimensional Ivshin-Pence Shape Memory Alloy Constitutive Model for Sensitivity and Uncertainty.
    Islam ABMR; Karadoğan E
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32214042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity and Uncertainty Analysis of One-Dimensional Tanaka and Liang-Rogers Shape Memory Alloy Constitutive Models.
    Islam ABMR; Karadoğan E
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31137640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Constitutive Description for Shape Memory Alloys with the Growth of Martensite Band.
    Li W; Shen X; Peng X
    Materials (Basel); 2014 Jan; 7(1):576-590. PubMed ID: 28788476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties and constitutive models of shape memory alloy for structural engineering: A review.
    Mohammadgholipour A; Billah AM
    J Intell Mater Syst Struct; 2023 Dec; 34(20):2335-2359. PubMed ID: 37970098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermomechanical Characterization and Modeling of NiTi Shape Memory Alloy Coil Spring.
    Puente-Córdova JG; Rentería-Baltiérrez FY; Diabb-Zavala JM; Mohamed-Noriega N; Bello-Gómez MA; Luna-Martínez JF
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A constitutive model of porous SMAs considering tensile-compressive asymmetry behaviors.
    Liu B; Dui G; Xie B; Xue L
    J Mech Behav Biomed Mater; 2014 Apr; 32():185-191. PubMed ID: 24480405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape Memory Alloy-Based Wearables: A Review, and Conceptual Frameworks on HCI and HRI in Industry 4.0.
    Srivastava R; Alsamhi SH; Murray N; Devine D
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys.
    Ashrafi MJ; Arghavani J; Naghdabadi R; Sohrabpour S
    J Mech Behav Biomed Mater; 2015 Feb; 42():292-310. PubMed ID: 25528691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and Characterization of High Performance Shape Memory Alloy Coatings for Structural Aerospace Applications.
    Exarchos DA; Dalla PT; Tragazikis IK; Dassios KG; Zafeiropoulos NE; Karabela MM; De Crescenzo C; Karatza D; Musmarra D; Chianese S; Matikas TE
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29783626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Pore Shape on Mechanical Properties of Porous Shape Memory Alloy.
    Liu B; Pan Y
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Multiscale Analysis on the Superelasticity Behavior of Architected Shape Memory Alloy Materials.
    Xu R; Bouby C; Zahrouni H; Ben Zineb T; Hu H; Potier-Ferry M
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30227627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape Memory Alloys Applied to Automotive Adaptive Aerodynamics.
    Battaglia M; Sellitto A; Giamundo A; Visone M; Riccio A
    Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Mechanical Properties of Large Shape Memory Alloy Bars under Different Heat Treatments.
    Kang L; Qian H; Guo Y; Ye C; Li Z
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32846946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation and Validation of a Shape Memory Alloy Material Model Using Interactive Fibre Rubber Composites.
    Annadata AR; Acevedo-Velazquez AI; Woodworth LA; Gereke T; Kaliske M; Röbenack K; Cherif C
    Materials (Basel); 2024 Mar; 17(5):. PubMed ID: 38473634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review of Neural Network Modeling of Shape Memory Alloys.
    Hmede R; Chapelle F; Lapusta Y
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Enhanced Dynamic Response Modelling of Superelastic Shape Memory Alloy Wires.
    Lenzen N; Altay O
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transformation-Induced Creep and Creep Recovery of Shape Memory Alloy.
    Takeda K; Tobushi H; Pieczyska EA
    Materials (Basel); 2012 May; 5(5):909-921. PubMed ID: 28817016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on the Cyclic Response of Superelastic Shape Memory Alloy (SMA) Slit Damper Devices Simulated by Quasi-Static Finite Element (FE) Analyses.
    Hu JW
    Materials (Basel); 2014 Feb; 7(2):1122-1141. PubMed ID: 28788504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite Element Analysis for the Self-Loosening Behavior of the Bolted Joint with a Superelastic Shape Memory Alloy.
    Jiang X; Huang J; Wang Y; Li B; Du J; Hao P
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30200540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational studies of shape memory alloy behavior in biomedical applications.
    Petrini L; Migliavacca F; Massarotti P; Schievano S; Dubini G; Auricchio F
    J Biomech Eng; 2005 Aug; 127(4):716-25. PubMed ID: 16121543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.