These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32214042)

  • 21. Design of a Morphing Skin with Shape Memory Alloy Based on Equivalent Thermal Stress Approach.
    Zhang W; Ma Y; Gao X; Chen W; Nie X
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744553
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experiments on deformation behaviour of functionally graded NiTi structures.
    Shariat BS; Meng Q; Mahmud AS; Wu Z; Bakhtiari R; Zhang J; Motazedian F; Yang H; Rio G; Nam TH; Liu Y
    Data Brief; 2017 Aug; 13():562-568. PubMed ID: 28706965
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shape Memory Alloy-Polymer Composites: Static and Fatigue Pullout Strength under Thermo-Mechanical Loading.
    Rodinò S; Curcio EM; Renzo DA; Sgambitterra E; Magarò P; Furgiuele F; Brandizzi M; Maletta C
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical Simulation and Experimental Study of a Simplified Force-Displacement Relationship in Superelastic SMA Helical Springs.
    Huang B; Lv H; Song Y
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30583587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resistance Characteristics of SMA Actuator Based on the Variable Speed Phase Transformation Constitutive Model.
    Lu Y; Zhang R; Xu Y; Wang L; Yue H
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32214043
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shape Memory Alloys for Aerospace, Recent Developments, and New Applications: A Short Review.
    Costanza G; Tata ME
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32326510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Temperature-Dependent Model of Shape Memory Alloys Considering Tensile-Compressive Asymmetry and the Ratcheting Effect.
    Wang L; Feng P; Wu Y; Liu Z
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32668645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Usage of shape memory alloy actuators for large force active disassembly applications.
    Abuzied H; Abbas A; Awad M; Senbel H
    Heliyon; 2020 Aug; 6(8):e04611. PubMed ID: 32817890
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Nanopores on Mechanical Properties of the Shape Memory Alloy.
    Du C; Li Z; Liu B
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34067037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Behavior of NiTiNb SMA wires under recovery stress or prestressing.
    Choi E; Nam TH; Chung YS; Kim YW; Lee SY
    Nanoscale Res Lett; 2012 Jan; 7(1):66. PubMed ID: 22222096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Out-of-Plane Behavior of Masonry Prisms Retrofitted with Shape Memory Alloy Stripes: Numerical and Parametric Analysis.
    Tabrizikahou A; Kuczma M; Łasecka-Plura M
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uniaxial Compressive Behavior of Concrete Columns Confined with Superelastic Shape Memory Alloy Wires.
    Hong C; Qian H; Song G
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32182842
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrical/Mechanical Monitoring of Shape Memory Alloy Reinforcing Fibers Obtained by Pullout Tests in SMA/Cement Composite Materials.
    Kim EH; Lee H; Kim JH; Bae SM; Hwang H; Yang H; Choi E; Hwang JH
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29470413
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing the performance characteristics and clinical forces in simulated shape memory bone staple surgical procedure: The significance of SMA material model.
    Saleeb AF; Dhakal B; Owusu-Danquah JS
    Comput Biol Med; 2015 Jul; 62():185-95. PubMed ID: 25956346
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design optimization study of a shape memory alloy active needle for biomedical applications.
    Konh B; Honarvar M; Hutapea P
    Med Eng Phys; 2015 May; 37(5):469-77. PubMed ID: 25782329
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overview and Future Advanced Engineering Applications for Morphing Surfaces by Shape Memory Alloy Materials.
    Sellitto A; Riccio A
    Materials (Basel); 2019 Feb; 12(5):. PubMed ID: 30823380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A lightweight shape-memory magnesium alloy.
    Ogawa Y; Ando D; Sutou Y; Koike J
    Science; 2016 Jul; 353(6297):368-70. PubMed ID: 27463668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-Way Shape Memory Effect Induced by Tensile Deformation in Columnar-Grained Cu
    Yao PS; Huang HY; Su YJ; Xie JX
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simulation of Shape Memory Alloy (SMA)-Bias Spring Actuation for Self-Shaping Architecture: Investigation of Parametric Sensitivity.
    Yi H
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32486035
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new look at biomedical Ti-based shape memory alloys.
    Biesiekierski A; Wang J; Gepreel MA; Wen C
    Acta Biomater; 2012 May; 8(5):1661-9. PubMed ID: 22326786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.