These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32214340)

  • 21. A Nanozyme- and Ambient Light-Based Smartphone Platform for Simultaneous Detection of Dual Biomarkers from Exposure to Organophosphorus Pesticides.
    Zhao Y; Yang M; Fu Q; Ouyang H; Wen W; Song Y; Zhu C; Lin Y; Du D
    Anal Chem; 2018 Jun; 90(12):7391-7398. PubMed ID: 29792679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Smartphone-based colorimetric detection platform using color correction algorithms to reduce external interference.
    Meng R; Yu Z; Fu Q; Fan Y; Fu L; Ding Z; Yang S; Cao Z; Jia L
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Aug; 316():124350. PubMed ID: 38692108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Digital postprocessing and image segmentation for objective analysis of colorimetric reactions.
    Woolf MS; Dignan LM; Scott AT; Landers JP
    Nat Protoc; 2021 Jan; 16(1):218-238. PubMed ID: 33299153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accurate Ambient Noise Assessment Using Smartphones.
    Zamora W; Calafate CT; Cano JC; Manzoni P
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28430126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Smartphone hearing screening with integrated quality control and data management.
    Swanepoel de W; Myburgh HC; Howe DM; Mahomed F; Eikelboom RH
    Int J Audiol; 2014 Dec; 53(12):841-9. PubMed ID: 24998412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-dimensional transforms for device color correction and calibration.
    Bala R; Sharma G; Monga V; Van de Capelle JP
    IEEE Trans Image Process; 2005 Aug; 14(8):1172-86. PubMed ID: 16121464
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Accuracy of Smartphone Sound Level Meter Applications With and Without Calibration.
    Serpanos YC; Renne B; Schoepflin JR; Davis D
    Am J Speech Lang Pathol; 2018 Nov; 27(4):1319-1328. PubMed ID: 30398549
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of local noise power spectrum and wavelet analysis in quantitative image quality assurance for EPIDs.
    Lee S; Yan G; Bassett P; Gopal A; Samant S
    Med Phys; 2016 Sep; 43(9):4996. PubMed ID: 27587030
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Smartphone application for emergency signal detection.
    Figueiredo IN; Leal C; Pinto L; Bolito J; Lemos A
    Med Eng Phys; 2016 Sep; 38(9):1021-7. PubMed ID: 27264240
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Smartphone coupled handheld array reader for real-time toxic gas detection.
    Devadhasan JP; Kim D; Lee DY; Kim S
    Anal Chim Acta; 2017 Sep; 984():168-176. PubMed ID: 28843560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Endockscope Using Next Generation Smartphones: "A Global Opportunity".
    Tse C; Patel RM; Yoon R; Okhunov Z; Landman J; Clayman RV
    J Endourol; 2018 Aug; 32(8):765-770. PubMed ID: 29860870
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A method to extract image noise level from patient images in CT.
    Malkus A; Szczykutowicz TP
    Med Phys; 2017 Jun; 44(6):2173-2184. PubMed ID: 28380245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hand-Held Reader for Colorimetric Sensor Arrays.
    Askim JR; Suslick KS
    Anal Chem; 2015 Aug; 87(15):7810-6. PubMed ID: 26177346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Age estimation of bloodstains using smartphones and digital image analysis.
    Thanakiatkrai P; Yaodam A; Kitpipit T
    Forensic Sci Int; 2013 Dec; 233(1-3):288-97. PubMed ID: 24314532
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel smartphone-based CD-spectrometer for high sensitive and cost-effective colorimetric detection of ascorbic acid.
    Kong L; Gan Y; Liang T; Zhong L; Pan Y; Kirsanov D; Legin A; Wan H; Wang P
    Anal Chim Acta; 2020 Jan; 1093():150-159. PubMed ID: 31735208
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Paper-Plastic Hybrid Microfluidic Device for Smartphone-Based Colorimetric Analysis of Urine.
    Jalal UM; Jin GJ; Shim JS
    Anal Chem; 2017 Dec; 89(24):13160-13166. PubMed ID: 29131592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. UIIS
    Mukherjee S; Pal S; Pal A; Ghosh D; Sarkar S; Bhand S; Sarkar P; Bhattacharyya N
    J Pharm Biomed Anal; 2019 Sep; 174():70-80. PubMed ID: 31158608
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Calibration-Free Method Based on Grey Relational Analysis for Heterogeneous Smartphones in Fingerprint-Based Indoor Positioning.
    Zhang S; Guo J; Luo N; Zhang D; Wang W; Wang L
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31505856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Colorimetric-Luminance Readout for Quantitative Analysis of Fluorescence Signals with a Smartphone CMOS Sensor.
    Priye A; Ball CS; Meagher RJ
    Anal Chem; 2018 Nov; 90(21):12385-12389. PubMed ID: 30272954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A 3D printed smartphone optosensing platform for point-of-need food safety inspection.
    Liu Z; Zhang Y; Xu S; Zhang H; Tan Y; Ma C; Song R; Jiang L; Yi C
    Anal Chim Acta; 2017 May; 966():81-89. PubMed ID: 28372730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.