These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32214674)

  • 1. A random walk model for infection on graphs: spread of epidemics & rumours with mobile agents.
    Draief M; Ganesh A
    Discret Event Dyn Syst; 2011; 21(1):41-61. PubMed ID: 32214674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robustness of random graphs based on graph spectra.
    Wu J; Barahona M; Tan YJ; Deng HZ
    Chaos; 2012 Dec; 22(4):043101. PubMed ID: 23278036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epidemics of random walkers in metapopulation model for complete, cycle, and star graphs.
    Nagatani T; Ichinose G; Tainaka KI
    J Theor Biol; 2018 Aug; 450():66-75. PubMed ID: 29702109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic Compartment Model with Mortality and Its Application to Epidemic Spreading in Complex Networks.
    Granger T; Michelitsch TM; Bestehorn M; Riascos AP; Collet BA
    Entropy (Basel); 2024 Apr; 26(5):. PubMed ID: 38785610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial Search by Quantum Walk is Optimal for Almost all Graphs.
    Chakraborty S; Novo L; Ambainis A; Omar Y
    Phys Rev Lett; 2016 Mar; 116(10):100501. PubMed ID: 27015464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bifurcations in the Kuramoto model on graphs.
    Chiba H; Medvedev GS; Mizuhara MS
    Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mean first-passage time for random walks in general graphs with a deep trap.
    Lin Y; Julaiti A; Zhang Z
    J Chem Phys; 2012 Sep; 137(12):124104. PubMed ID: 23020321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks.
    Van Mieghem P; van de Bovenkamp R
    Phys Rev Lett; 2013 Mar; 110(10):108701. PubMed ID: 23521310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Return probabilities and hitting times of random walks on sparse Erdös-Rényi graphs.
    Martin OC; Sulc P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031111. PubMed ID: 20365701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase transitions in the quadratic contact process on complex networks.
    Varghese C; Durrett R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062819. PubMed ID: 23848741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Random Plots Graph Generation Model for Studying Systems with Unknown Connection Structures.
    Ivanko E; Chernoskutov M
    Entropy (Basel); 2022 Feb; 24(2):. PubMed ID: 35205591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of diameters for Erdős-Rényi random graphs.
    Hartmann AK; Mézard M
    Phys Rev E; 2018 Mar; 97(3-1):032128. PubMed ID: 29776040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erdós-Rényi phase transition in the Axelrod model on complete graphs.
    Pinto S; Balenzuela P
    Phys Rev E; 2020 May; 101(5-1):052319. PubMed ID: 32575331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fault tolerance of random graphs with respect to connectivity: Mean-field approximation for semidense random graphs.
    Takabe S; Nakano T; Wadayama T
    Phys Rev E; 2019 May; 99(5-1):050304. PubMed ID: 31212417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating Graph Robustness Through the Randic Index.
    De Meo P; Messina F; Rosaci D; Sarne GML; Vasilakos AV
    IEEE Trans Cybern; 2018 Nov; 48(11):3232-3242. PubMed ID: 29990094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cluster Tails for Critical Power-Law Inhomogeneous Random Graphs.
    van der Hofstad R; Kliem S; van Leeuwaarden JSH
    J Stat Phys; 2018; 171(1):38-95. PubMed ID: 31258182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random line graphs and a linear law for assortativity.
    Liu D; Trajanovski S; Van Mieghem P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012816. PubMed ID: 23410397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spread of information and infection on finite random networks.
    Isham V; Kaczmarska J; Nekovee M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046128. PubMed ID: 21599261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction spreading on graphs.
    Burioni R; Chibbaro S; Vergni D; Vulpiani A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):055101. PubMed ID: 23214833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motif-guided Heterogeneous Graph Deep Generation.
    Ling C; Yang C; Zhao L
    Knowl Inf Syst; 2023 Jul; 65(7):3099-3124. PubMed ID: 39131594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.