These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32214731)

  • 1. Integration of small world networks with multi-agent systems for simulating epidemic spatiotemporal transmission.
    Liu T; Li X; Liu X
    Chin Sci Bull; 2010; 55(13):1285-1293. PubMed ID: 32214731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling COVID-19 spread using multi-agent simulation with small-world network approach.
    Fan Q; Li Q; Chen Y; Tang J
    BMC Public Health; 2024 Mar; 24(1):672. PubMed ID: 38431581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling influenza A(H1N1) 2009 epidemics using a random network in a distributed computing environment.
    González-Parra G; Villanueva RJ; Ruiz-Baragaño J; Moraño JA
    Acta Trop; 2015 Mar; 143():29-35. PubMed ID: 25559047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new SEAIRD pandemic prediction model with clinical and epidemiological data analysis on COVID-19 outbreak.
    Liu XX; Fong SJ; Dey N; Crespo RG; Herrera-Viedma E
    Appl Intell (Dordr); 2021; 51(7):4162-4198. PubMed ID: 34764574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An agent-based model to evaluate the COVID-19 transmission risks in facilities.
    Cuevas E
    Comput Biol Med; 2020 Jun; 121():103827. PubMed ID: 32568667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The spatiotemporal transmission of dengue and its driving mechanism: A case study on the 2014 dengue outbreak in Guangdong, China.
    Zhu G; Xiao J; Zhang B; Liu T; Lin H; Li X; Song T; Zhang Y; Ma W; Hao Y
    Sci Total Environ; 2018 May; 622-623():252-259. PubMed ID: 29216466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural-SEIR: A flexible data-driven framework for precise prediction of epidemic disease.
    Wang H; Qiu X; Yang J; Li Q; Tan X; Huang J
    Math Biosci Eng; 2023 Aug; 20(9):16807-16823. PubMed ID: 37920035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epidemic propagation risk study with effective fractal dimension.
    Nian F; Li F
    Risk Anal; 2024 Mar; 44(3):612-622. PubMed ID: 37435956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-agent simulation model for the evaluation of COVID-19 transmission.
    Castro BM; de Abreu de Melo Y; Fernanda Dos Santos N; Luiz da Costa Barcellos A; Choren R; Salles RM
    Comput Biol Med; 2021 Sep; 136():104645. PubMed ID: 34325230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An agent-based approach for modeling dynamics of contagious disease spread.
    Perez L; Dragicevic S
    Int J Health Geogr; 2009 Aug; 8():50. PubMed ID: 19656403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Spatiotemporal Solution to Control COVID-19 Transmission at the Community Scale for Returning to Normalcy: COVID-19 Symptom Onset Risk Spatiotemporal Analysis.
    Tong C; Shi W; Zhang A; Shi Z
    JMIR Public Health Surveill; 2023 Jan; 9():e36538. PubMed ID: 36508488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating the conversion of rural settlements to town land based on multi-agent systems and cellular automata.
    Liu Y; Kong X; Liu Y; Chen Y
    PLoS One; 2013; 8(11):e79300. PubMed ID: 24244472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A SEIARQ model combine with Logistic to predict COVID-19 within small-world networks.
    Liu Q; Yuan S; Wang X
    Math Biosci Eng; 2023 Jan; 20(2):4006-4017. PubMed ID: 36899614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influences on influenza transmission within terminal based on hierarchical structure of personal contact network.
    Shao Q; Jia M
    BMC Public Health; 2015 Mar; 15():257. PubMed ID: 25849344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agent-Based Computational Epidemiological Modeling.
    Bissett KR; Cadena J; Khan M; Kuhlman CJ
    J Indian Inst Sci; 2021; 101(3):303-327. PubMed ID: 34629766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial heterogeneity and infection patterns on epidemic transmission disclosed by a combined contact-dependent dynamics and compartmental model.
    Zhu Y; Shen R; Dong H; Wang W
    PLoS One; 2023; 18(6):e0286558. PubMed ID: 37310972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and simulation of material-integrated distributed sensor processing with a code-based agent platform and mobile multi-agent systems.
    Bosse S
    Sensors (Basel); 2015 Feb; 15(2):4513-49. PubMed ID: 25690550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards Digital Twin-Oriented Complex Networked Systems: Introducing heterogeneous node features and interaction rules.
    Wen J; Gabrys B; Musial K
    PLoS One; 2024; 19(1):e0296426. PubMed ID: 38166038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of a bio-dynamic model via Lyapunov principle and small-world network for tuberculosis.
    Chung HY; Chung CY; Ou SC
    IET Syst Biol; 2012 Oct; 6(5):196-206. PubMed ID: 23101874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generating synthetic population for simulating the spatiotemporal dynamics of epidemics.
    Zhu K; Yin L; Liu K; Liu J; Shi Y; Li X; Zou H; Du H
    PLoS Comput Biol; 2024 Feb; 20(2):e1011810. PubMed ID: 38346079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.