These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
383 related articles for article (PubMed ID: 32215569)
1. Lateral Oscillation and Body Compliance Help Snakes and Snake Robots Stably Traverse Large, Smooth Obstacles. Fu Q; Gart SW; Mitchel TW; Kim JS; Chirikjian GS; Li C Integr Comp Biol; 2020 Jul; 60(1):171-179. PubMed ID: 32215569 [TBL] [Abstract][Full Text] [Related]
2. Robotic modelling of snake traversing large, smooth obstacles reveals stability benefits of body compliance. Fu Q; Li C R Soc Open Sci; 2020 Feb; 7(2):191192. PubMed ID: 32257305 [TBL] [Abstract][Full Text] [Related]
3. Snakes partition their body to traverse large steps stably. Gart SW; Mitchel TW; Li C J Exp Biol; 2019 Apr; 222(Pt 8):. PubMed ID: 30936272 [TBL] [Abstract][Full Text] [Related]
4. Contact feedback helps snake robots propel against uneven terrain using vertical bending. Fu Q; Li C Bioinspir Biomim; 2023 Aug; 18(5):. PubMed ID: 37433307 [TBL] [Abstract][Full Text] [Related]
5. Snakes combine vertical and lateral bending to traverse uneven terrain. Fu Q; Astley HC; Li C Bioinspir Biomim; 2022 Apr; 17(3):. PubMed ID: 35235918 [TBL] [Abstract][Full Text] [Related]
6. Environmental force sensing helps robots traverse cluttered large obstacles. Xuan Q; Li C Bioinspir Biomim; 2023 Nov; 19(1):. PubMed ID: 37939388 [TBL] [Abstract][Full Text] [Related]
7. Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain. Li C; Pullin AO; Haldane DW; Lam HK; Fearing RS; Full RJ Bioinspir Biomim; 2015 Jun; 10(4):046003. PubMed ID: 26098002 [TBL] [Abstract][Full Text] [Related]
8. Body-terrain interaction affects large bump traversal of insects and legged robots. Gart SW; Li C Bioinspir Biomim; 2018 Feb; 13(2):026005. PubMed ID: 29394159 [TBL] [Abstract][Full Text] [Related]
9. Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot. Bing Z; Cheng L; Chen G; Röhrbein F; Huang K; Knoll A Bioinspir Biomim; 2017 Apr; 12(3):035001. PubMed ID: 28375848 [TBL] [Abstract][Full Text] [Related]
10. Continuous body 3-D reconstruction of limbless animals. Fu Q; Mitchel TW; Kim JS; Chirikjian GS; Li C J Exp Biol; 2021 Mar; 224(Pt 6):. PubMed ID: 33536306 [TBL] [Abstract][Full Text] [Related]
11. Dynamic traversal of large gaps by insects and legged robots reveals a template. Gart SW; Yan C; Othayoth R; Ren Z; Li C Bioinspir Biomim; 2018 Feb; 13(2):026006. PubMed ID: 29394160 [TBL] [Abstract][Full Text] [Related]
12. A survey of snake-inspired robot designs. Hopkins JK; Spranklin BW; Gupta SK Bioinspir Biomim; 2009 Jun; 4(2):021001. PubMed ID: 19158415 [TBL] [Abstract][Full Text] [Related]
13. Pacific lamprey inspired climbing. Van Stratum B; Shoele K; Clark JE Bioinspir Biomim; 2023 May; 18(4):. PubMed ID: 37196650 [TBL] [Abstract][Full Text] [Related]
14. Decoding Decentralized Control Mechanism Underlying Adaptive and Versatile Locomotion of Snakes. Kano T; Ishiguro A Integr Comp Biol; 2020 Jul; 60(1):232-247. PubMed ID: 32215573 [TBL] [Abstract][Full Text] [Related]
15. Planar maneuvering control of underwater snake robots using virtual holonomic constraints. Kohl AM; Kelasidi E; Mohammadi A; Maggiore M; Pettersen KY Bioinspir Biomim; 2016 Nov; 11(6):065005. PubMed ID: 27882895 [TBL] [Abstract][Full Text] [Related]
16. Tegotae-based decentralised control scheme for autonomous gait transition of snake-like robots. Kano T; Yoshizawa R; Ishiguro A Bioinspir Biomim; 2017 Aug; 12(4):046009. PubMed ID: 28581439 [TBL] [Abstract][Full Text] [Related]
17. Non-iterative geometric approach for inverse kinematics of redundant lead-module in a radiosurgical snake-like robot. Omisore OM; Han S; Ren L; Zhang N; Ivanov K; Elazab A; Wang L Biomed Eng Online; 2017 Aug; 16(1):93. PubMed ID: 28764713 [TBL] [Abstract][Full Text] [Related]