These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32215867)

  • 21. The effect of orally administered desiccated beef spleen and abdominal lymph nodes on megakaryocytogenesis and thrombocytes.
    SCHLEICHER EM
    Acta Haematol; 1951 Mar; 5(3):143-50. PubMed ID: 14818696
    [No Abstract]   [Full Text] [Related]  

  • 22. Effects of internal irradiation of mice with P32. I. Spleen, lymph nodes, thymus, bone and bone marrow.
    WARREN S; MacMILLAN JC; DIXON FJ
    Radiology; 1950 Sep; 55(3):375-89. PubMed ID: 14781344
    [No Abstract]   [Full Text] [Related]  

  • 23. The formation of immunoglobulins by human tissues in vitro. 3. Spleen, lymph nodes, bone marrow and thymus.
    van Furth R; Schuit HR; Hijmans W
    Immunology; 1966 Jul; 11(1):19-27. PubMed ID: 4161983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pi (Spleen)-deficiency syndrome in tumor microenvironment is the pivotal pathogenesis of colorectal cancer immune escape.
    Sun XG; Lin XC; Diao JX; Yu ZL; Li K
    Chin J Integr Med; 2016 Oct; 22(10):789-94. PubMed ID: 26556710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Simultaneous immunocytochemical detection of tumor cells in lymph nodes and in bone marrow of patients with resectable bronchial carcinomas].
    Passlick B; Pantel K; Kubuschok B; Izbicki JR; Thetter O
    Langenbecks Arch Chir Suppl Kongressbd; 1998; 115(Suppl I):21-4. PubMed ID: 14518204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bone Marrow Microenvironment as a Regulator and Therapeutic Target for Prostate Cancer Bone Metastasis.
    Park SH; Keller ET; Shiozawa Y
    Calcif Tissue Int; 2018 Feb; 102(2):152-162. PubMed ID: 29094177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distribution of plaque-forming cells in the mouse for a protein antigen. Evidence for highly active parathymic lymph nodes following intraperitoneal injection of hen lysozyme.
    Hill SW
    Immunology; 1976 Jun; 30(6):895-906. PubMed ID: 800396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of disseminated tumor cells: strategies and diagnostic implications.
    Zehentner BK
    Expert Rev Mol Diagn; 2002 Jan; 2(1):41-8. PubMed ID: 11963801
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous immunohistochemical detection of tumor cells in lymph nodes and bone marrow aspirates in breast cancer and its correlation with other prognostic factors.
    Gerber B; Krause A; Müller H; Richter D; Reimer T; Makovitzky J; Herrnring C; Jeschke U; Kundt G; Friese K
    J Clin Oncol; 2001 Feb; 19(4):960-71. PubMed ID: 11181658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neoplasms in the bone marrow niches: disturbance of the microecosystem.
    Mu LL; Ke F; Guo XL; Cai JJ; Hong DL
    Int J Hematol; 2017 May; 105(5):558-565. PubMed ID: 28176227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploiting epigenetically mediated changes: Acute myeloid leukemia, leukemia stem cells and the bone marrow microenvironment.
    Kogan AA; Lapidus RG; Baer MR; Rassool FV
    Adv Cancer Res; 2019; 141():213-253. PubMed ID: 30691684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Technical aspects of immunocytochemical detection of disseminated tumor cells in bone marrow].
    Braun S
    Acta Med Austriaca Suppl; 2002; 59():14-7. PubMed ID: 12506755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overview of resistance to systemic therapy in patients with breast cancer.
    Gonzalez-Angulo AM; Morales-Vasquez F; Hortobagyi GN
    Adv Exp Med Biol; 2007; 608():1-22. PubMed ID: 17993229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Primary amyloidosis of liver, spleen, kidneys, suprarenals, bone marrow, pancreas, lymph nodes, and blood vessels in lungs.
    ATKINSON AJ
    Gastroenterology; 1946 Oct; 7(4):477-82. PubMed ID: 21001354
    [No Abstract]   [Full Text] [Related]  

  • 35. The deficiency of galectin-3 in stromal cells leads to enhanced tumor growth and bone marrow metastasis.
    Pereira JX; Azeredo MC; Martins FS; Chammas R; Oliveira FL; Santos SN; Bernardes ES; El-Cheikh MC
    BMC Cancer; 2016 Aug; 16():636. PubMed ID: 27526676
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CXCL12-CXCR4 contributes to the implication of bone marrow in cancer metastasis.
    Shi J; Wei Y; Xia J; Wang S; Wu J; Chen F; Huang G; Chen J
    Future Oncol; 2014 Apr; 10(5):749-59. PubMed ID: 24799056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Omentum and bone marrow: how adipocyte-rich organs create tumour microenvironments conducive for metastatic progression.
    Chkourko Gusky H; Diedrich J; MacDougald OA; Podgorski I
    Obes Rev; 2016 Nov; 17(11):1015-1029. PubMed ID: 27432523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy.
    Fransen MF; Schoonderwoerd M; Knopf P; Camps MG; Hawinkels LJ; Kneilling M; van Hall T; Ossendorp F
    JCI Insight; 2018 Dec; 3(23):. PubMed ID: 30518694
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting the Bone Marrow Microenvironment.
    Moschetta M; Kawano Y; Podar K
    Cancer Treat Res; 2016; 169():63-102. PubMed ID: 27696259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tumor-host interactions: a far-reaching relationship.
    McAllister SS; Weinberg RA
    J Clin Oncol; 2010 Sep; 28(26):4022-8. PubMed ID: 20644094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.