These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32216010)

  • 1. Emergence of a hybrid PKS-NRPS secondary metabolite cluster in a clonal population of the rice blast fungus Magnaporthe oryzae.
    Zhong Z; Lin L; Zheng H; Bao J; Chen M; Zhang L; Tang W; Ebbole DJ; Wang Z
    Environ Microbiol; 2020 Jul; 22(7):2709-2723. PubMed ID: 32216010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transposable elements impact the population divergence of rice blast fungus
    Lin L; Sun T; Guo J; Lin L; Chen M; Wang Z; Bao J; Norvienyeku J; Zhang D; Han Y; Lu G; Rensing C; Zheng H; Zhong Z; Wang Z
    mBio; 2024 May; 15(5):e0008624. PubMed ID: 38534157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic rearrangements generate hypervariable mini-chromosomes in host-specific isolates of the blast fungus.
    Langner T; Harant A; Gomez-Luciano LB; Shrestha RK; Malmgren A; Latorre SM; Burbano HA; Win J; Kamoun S
    PLoS Genet; 2021 Feb; 17(2):e1009386. PubMed ID: 33591993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ACE1 secondary metabolite gene cluster is a pathogenicity factor of wheat blast fungus.
    Vy TTP; Inoue Y; Asuke S; Chuma I; Nakayashiki H; Tosa Y
    Commun Biol; 2024 Jul; 7(1):812. PubMed ID: 38965407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secondary Metabolites of the Rice Blast Fungus
    Motoyama T
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33218033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid de novo genome-reassembly reveals new insights on pathways and pathogenicity determinants in rice blast pathogen Magnaporthe oryzae RMg_Dl.
    Reddy B; Kumar A; Mehta S; Sheoran N; Chinnusamy V; Prakash G
    Sci Rep; 2021 Nov; 11(1):22922. PubMed ID: 34824307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of the genomes of two field isolates of the rice blast fungus Magnaporthe oryzae.
    Xue M; Yang J; Li Z; Hu S; Yao N; Dean RA; Zhao W; Shen M; Zhang H; Li C; Liu L; Cao L; Xu X; Xing Y; Hsiang T; Zhang Z; Xu JR; Peng YL
    PLoS Genet; 2012; 8(8):e1002869. PubMed ID: 22876203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Population genomic analysis of the rice blast fungus reveals specific events associated with expansion of three main clades.
    Zhong Z; Chen M; Lin L; Han Y; Bao J; Tang W; Lin L; Lin Y; Somai R; Lu L; Zhang W; Chen J; Hong Y; Chen X; Wang B; Shen WC; Lu G; Norvienyeku J; Ebbole DJ; Wang Z
    ISME J; 2018 Aug; 12(8):1867-1878. PubMed ID: 29568114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coexistence of Multiple Endemic and Pandemic Lineages of the Rice Blast Pathogen.
    Gladieux P; Ravel S; Rieux A; Cros-Arteil S; Adreit H; Milazzo J; Thierry M; Fournier E; Terauchi R; Tharreau D
    mBio; 2018 Apr; 9(2):. PubMed ID: 29615506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Magnaporthe oryzae.
    Thon MR; Pan H; Diener S; Papalas J; Taro A; Mitchell TK; Dean RA
    Genome Biol; 2006; 7(2):R16. PubMed ID: 16507177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements.
    Yoshida K; Saunders DG; Mitsuoka C; Natsume S; Kosugi S; Saitoh H; Inoue Y; Chuma I; Tosa Y; Cano LM; Kamoun S; Terauchi R
    BMC Genomics; 2016 May; 17():370. PubMed ID: 27194050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering Genome Content and Evolutionary Relationships of Isolates from the Fungus Magnaporthe oryzae Attacking Different Host Plants.
    Chiapello H; Mallet L; Guérin C; Aguileta G; Amselem J; Kroj T; Ortega-Abboud E; Lebrun MH; Henrissat B; Gendrault A; Rodolphe F; Tharreau D; Fournier E
    Genome Biol Evol; 2015 Oct; 7(10):2896-912. PubMed ID: 26454013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative genomic analysis revealed rapid differentiation in the pathogenicity-related gene repertoires between Pyricularia oryzae and Pyricularia penniseti isolated from a Pennisetum grass.
    Zheng H; Zhong Z; Shi M; Zhang L; Lin L; Hong Y; Fang T; Zhu Y; Guo J; Zhang L; Fang J; Lin H; Norvienyeku J; Chen X; Lu G; Hu H; Wang Z
    BMC Genomics; 2018 Dec; 19(1):927. PubMed ID: 30545292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice.
    Wu J; Kou Y; Bao J; Li Y; Tang M; Zhu X; Ponaya A; Xiao G; Li J; Li C; Song MY; Cumagun CJ; Deng Q; Lu G; Jeon JS; Naqvi NI; Zhou B
    New Phytol; 2015 Jun; 206(4):1463-75. PubMed ID: 25659573
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Saha P; Ghosh S; Roy-Barman S
    mSphere; 2020 Apr; 5(2):. PubMed ID: 32238572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential loss of effector genes in three recently expanded pandemic clonal lineages of the rice blast fungus.
    Latorre SM; Reyes-Avila CS; Malmgren A; Win J; Kamoun S; Burbano HA
    BMC Biol; 2020 Jul; 18(1):88. PubMed ID: 32677941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnaporthe grisea avirulence gene ACE1 belongs to an infection-specific gene cluster involved in secondary metabolism.
    Collemare J; Pianfetti M; Houlle AE; Morin D; Camborde L; Gagey MJ; Barbisan C; Fudal I; Lebrun MH; Böhnert HU
    New Phytol; 2008; 179(1):196-208. PubMed ID: 18433432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene Flow between Divergent Cereal- and Grass-Specific Lineages of the Rice Blast Fungus
    Gladieux P; Condon B; Ravel S; Soanes D; Maciel JLN; Nhani A; Chen L; Terauchi R; Lebrun MH; Tharreau D; Mitchell T; Pedley KF; Valent B; Talbot NJ; Farman M; Fournier E
    mBio; 2018 Feb; 9(1):. PubMed ID: 29487238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global genome and transcriptome analyses of Magnaporthe oryzae epidemic isolate 98-06 uncover novel effectors and pathogenicity-related genes, revealing gene gain and lose dynamics in genome evolution.
    Dong Y; Li Y; Zhao M; Jing M; Liu X; Liu M; Guo X; Zhang X; Chen Y; Liu Y; Liu Y; Ye W; Zhang H; Wang Y; Zheng X; Wang P; Zhang Z
    PLoS Pathog; 2015 Apr; 11(4):e1004801. PubMed ID: 25837042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnaporthe oryzae MoNdt80 is a transcriptional regulator of GlcNAc catabolic pathway involved in pathogenesis.
    Bhatt DN; Ansari S; Kumar A; Ghosh S; Narula A; Datta A
    Microbiol Res; 2020 Oct; 239():126550. PubMed ID: 32712567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.