These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32216010)

  • 21. De novo genome assembly and annotation of rice sheath rot fungus Sarocladium oryzae reveals genes involved in Helvolic acid and Cerulenin biosynthesis pathways.
    Hittalmani S; Mahesh HB; Mahadevaiah C; Prasannakumar MK
    BMC Genomics; 2016 Mar; 17():271. PubMed ID: 27036298
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte.
    Xu XH; Su ZZ; Wang C; Kubicek CP; Feng XX; Mao LJ; Wang JY; Chen C; Lin FC; Zhang CL
    Sci Rep; 2014 Jul; 4():5783. PubMed ID: 25048173
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative analysis of secondary metabolite gene clusters in different strains of Magnaporthe oryzae.
    Saha P; Sarkar A; Sabnam N; Shirke MD; Mahesh HB; Nikhil A; Rajamani A; Gowda M; Roy-Barman S
    FEMS Microbiol Lett; 2021 Jan; 368(1):. PubMed ID: 33355334
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome wide analysis of the transition to pathogenic lifestyles in Magnaporthales fungi.
    Zhang N; Cai G; Price DC; Crouch JA; Gladieux P; Hillman B; Khang CH; LeBrun MH; Lee YH; Luo J; Qiu H; Veltri D; Wisecaver JH; Zhu J; Bhattacharya D
    Sci Rep; 2018 Apr; 8(1):5862. PubMed ID: 29651164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinct genomic contexts predict gene presence-absence variation in different pathotypes of Magnaporthe oryzae.
    Joubert PM; Krasileva KV
    Genetics; 2024 Apr; 226(4):. PubMed ID: 38290434
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a SCAR marker linked to fungal pathogenicity of rice blast fungus Magnaporthe Oryzae.
    Quoc NB; Trang HTT; Phuong NDN; Chau NNB; Jantasuriyarat C
    Int Microbiol; 2021 May; 24(2):149-156. PubMed ID: 33161504
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Maintenance of divergent lineages of the Rice Blast Fungus Pyricularia oryzae through niche separation, loss of sex and post-mating genetic incompatibilities.
    Thierry M; Charriat F; Milazzo J; Adreit H; Ravel S; Cros-Arteil S; Borron S; Sella V; Kroj T; Ioos R; Fournier E; Tharreau D; Gladieux P
    PLoS Pathog; 2022 Jul; 18(7):e1010687. PubMed ID: 35877779
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heterologous expression of the avirulence gene
    Song Z; Bakeer W; Marshall JW; Yakasai AA; Khalid RM; Collemare J; Skellam E; Tharreau D; Lebrun MH; Lazarus CM; Bailey AM; Simpson TJ; Cox RJ
    Chem Sci; 2015 Aug; 6(8):4837-4845. PubMed ID: 29142718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen.
    Frantzeskakis L; Kracher B; Kusch S; Yoshikawa-Maekawa M; Bauer S; Pedersen C; Spanu PD; Maekawa T; Schulze-Lefert P; Panstruga R
    BMC Genomics; 2018 May; 19(1):381. PubMed ID: 29788921
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosynthesis and biological function of secondary metabolites of the rice blast fungus Pyricularia oryzae.
    Motoyama T; Yun CS; Osada H
    J Ind Microbiol Biotechnol; 2021 Dec; 48(9-10):. PubMed ID: 34379774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome assisted molecular typing and pathotyping of rice blast pathogen, Magnaporthe oryzae, reveals a genetically homogenous population with high virulence diversity.
    Sheoran N; Ganesan P; Mughal NM; Yadav IS; Kumar A
    Fungal Biol; 2021 Sep; 125(9):733-747. PubMed ID: 34420700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomic organization and sequence dynamics of the AvrPiz-t locus in Magnaporthe oryzae.
    Li P; Bai B; Zhang HY; Zhou H; Zhou B
    J Zhejiang Univ Sci B; 2012 Jun; 13(6):452-64. PubMed ID: 22661208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A detailed in silico analysis of secondary metabolite biosynthesis clusters in the genome of the broad host range plant pathogenic fungus Sclerotinia sclerotiorum.
    Graham-Taylor C; Kamphuis LG; Derbyshire MC
    BMC Genomics; 2020 Jan; 21(1):7. PubMed ID: 31898475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for horizontal transfer of a secondary metabolite gene cluster between fungi.
    Khaldi N; Collemare J; Lebrun MH; Wolfe KH
    Genome Biol; 2008 Jan; 9(1):R18. PubMed ID: 18218086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased metabolite production by deletion of an HDA1-type histone deacetylase in the phytopathogenic fungi, Magnaporthe oryzae (Pyricularia oryzae) and Fusarium asiaticum.
    Maeda K; Izawa M; Nakajima Y; Jin Q; Hirose T; Nakamura T; Koshino H; Kanamaru K; Ohsato S; Kamakura T; Kobayashi T; Yoshida M; Kimura M
    Lett Appl Microbiol; 2017 Nov; 65(5):446-452. PubMed ID: 28862744
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antagonistic Mechanism Analysis of
    Su L; Zhang J; Fan J; Li D; Zhao M; Wang Y; Pan H; Zhao L; Zhang X
    J Agric Food Chem; 2024 Sep; 72(36):19657-19666. PubMed ID: 39190007
    [No Abstract]   [Full Text] [Related]  

  • 37. Biosynthesis of secondary metabolites in the rice blast fungus Magnaporthe grisea: the role of hybrid PKS-NRPS in pathogenicity.
    Collemare J; Billard A; Böhnert HU; Lebrun MH
    Mycol Res; 2008 Feb; 112(Pt 2):207-15. PubMed ID: 18272356
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tracing the Origin and Evolutionary History of
    Pordel A; Ravel S; Charriat F; Gladieux P; Cros-Arteil S; Milazzo J; Adreit H; Javan-Nikkhah M; Mirzadi-Gohari A; Moumeni A; Tharreau D
    Phytopathology; 2021 Jan; 111(1):128-136. PubMed ID: 33100147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional genomics in the rice blast fungus to unravel the fungal pathogenicity.
    Jeon J; Choi J; Park J; Lee YH
    J Zhejiang Univ Sci B; 2008 Oct; 9(10):747-52. PubMed ID: 18837101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome mining of the citrus pathogen Elsinoë fawcettii; prediction and prioritisation of candidate effectors, cell wall degrading enzymes and secondary metabolite gene clusters.
    Jeffress S; Arun-Chinnappa K; Stodart B; Vaghefi N; Tan YP; Ash G
    PLoS One; 2020; 15(5):e0227396. PubMed ID: 32469865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.