These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 32216020)
1. Anaerobic microbial communities and their potential for bioenergy production in heavily biodegraded petroleum reservoirs. de Rezende JR; Oldenburg TBP; Korin T; Richardson WDL; Fustic M; Aitken CM; Bowler BFJ; Sherry A; Grigoryan A; Voordouw G; Larter SR; Head IM; Hubert CRJ Environ Microbiol; 2020 Aug; 22(8):3049-3065. PubMed ID: 32216020 [TBL] [Abstract][Full Text] [Related]
2. Iron oxides alter methanogenic pathways of acetate in production water of high-temperature petroleum reservoir. Pan P; Hong B; Mbadinga SM; Wang LY; Liu JF; Yang SZ; Gu JD; Mu BZ Appl Microbiol Biotechnol; 2017 Sep; 101(18):7053-7063. PubMed ID: 28730409 [TBL] [Abstract][Full Text] [Related]
3. Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Gieg LM; Davidova IA; Duncan KE; Suflita JM Environ Microbiol; 2010 Nov; 12(11):3074-86. PubMed ID: 20602630 [TBL] [Abstract][Full Text] [Related]
4. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Jones DM; Head IM; Gray ND; Adams JJ; Rowan AK; Aitken CM; Bennett B; Huang H; Brown A; Bowler BF; Oldenburg T; Erdmann M; Larter SR Nature; 2008 Jan; 451(7175):176-80. PubMed ID: 18075503 [TBL] [Abstract][Full Text] [Related]
6. Methanogenic degradation of branched alkanes in enrichment cultures of production water from a high-temperature petroleum reservoir. Chen J; Liu YF; Zhou L; Mbadinga SM; Yang T; Zhou J; Liu JF; Yang SZ; Gu JD; Mu BZ Appl Microbiol Biotechnol; 2019 Mar; 103(5):2391-2401. PubMed ID: 30610291 [TBL] [Abstract][Full Text] [Related]
7. Anaerobic Degradation of Non-Methane Alkanes by " Laso-Pérez R; Hahn C; van Vliet DM; Tegetmeyer HE; Schubotz F; Smit NT; Pape T; Sahling H; Bohrmann G; Boetius A; Knittel K; Wegener G mBio; 2019 Aug; 10(4):. PubMed ID: 31431553 [TBL] [Abstract][Full Text] [Related]
8. Methanogenic biodegradation of paraffinic solvent hydrocarbons in two different oil sands tailings. Mohamad Shahimin MF; Siddique T Sci Total Environ; 2017 Apr; 583():115-122. PubMed ID: 28094047 [TBL] [Abstract][Full Text] [Related]
9. Anaerobic hydrocarbon biodegradation by alkylotrophic methanogens in deep oil reservoirs. Zhang CJ; Zhou Z; Cha G; Li L; Fu L; Liu LY; Yang L; Wegener G; Cheng L; Li M ISME J; 2024 Jan; 18(1):. PubMed ID: 39083033 [TBL] [Abstract][Full Text] [Related]
10. Use of Acetate, Propionate, and Butyrate for Reduction of Nitrate and Sulfate and Methanogenesis in Microcosms and Bioreactors Simulating an Oil Reservoir. Chen C; Shen Y; An D; Voordouw G Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130297 [TBL] [Abstract][Full Text] [Related]
11. DNA stable-isotope probing of oil sands tailings pond enrichment cultures reveals different key players for toluene degradation under methanogenic and sulfidogenic conditions. Laban NA; Dao A; Foght J FEMS Microbiol Ecol; 2015 May; 91(5):. PubMed ID: 25873466 [TBL] [Abstract][Full Text] [Related]
12. Sequential biodegradation of complex naphtha hydrocarbons under methanogenic conditions in two different oil sands tailings. Mohamad Shahimin MF; Siddique T Environ Pollut; 2017 Feb; 221():398-406. PubMed ID: 27939633 [TBL] [Abstract][Full Text] [Related]
13. Elucidation of the methanogenic potential from coalbed microbial communities amended with volatile fatty acids. Lyles CN; Parisi VA; Beasley WH; Van Nostrand JD; Zhou J; Suflita JM FEMS Microbiol Ecol; 2017 Apr; 93(4):. PubMed ID: 28369331 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamic constraints on methanogenic crude oil biodegradation. Dolfing J; Larter SR; Head IM ISME J; 2008 Apr; 2(4):442-52. PubMed ID: 18079730 [TBL] [Abstract][Full Text] [Related]
15. Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sands tailings. Siddique T; Penner T; Semple K; Foght JM Environ Sci Technol; 2011 Jul; 45(13):5892-9. PubMed ID: 21644510 [TBL] [Abstract][Full Text] [Related]
16. A review on microbial diversity and genetic markers involved in methanogenic degradation of hydrocarbons: futuristic prospects of biofuel recovery from contaminated regions. Sengupta K; Pal S Environ Sci Pollut Res Int; 2021 Aug; 28(30):40288-40307. PubMed ID: 33844144 [TBL] [Abstract][Full Text] [Related]
17. Evidence for syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the high-temperature petroleum reservoir of Yabase oil field (Japan). Mayumi D; Mochimaru H; Yoshioka H; Sakata S; Maeda H; Miyagawa Y; Ikarashi M; Takeuchi M; Kamagata Y Environ Microbiol; 2011 Aug; 13(8):1995-2006. PubMed ID: 20860731 [TBL] [Abstract][Full Text] [Related]
18. Interrogation of Chesapeake Bay sediment microbial communities for intrinsic alkane-utilizing potential under anaerobic conditions. Johnson JM; Wawrik B; Isom C; Boling WB; Callaghan AV FEMS Microbiol Ecol; 2015 Feb; 91(2):1-14. PubMed ID: 25764556 [TBL] [Abstract][Full Text] [Related]
19. More than 2500 years of oil exposure shape sediment microbiomes with the potential for syntrophic degradation of hydrocarbons linked to methanogenesis. Michas A; Vestergaard G; Trautwein K; Avramidis P; Hatzinikolaou DG; Vorgias CE; Wilkes H; Rabus R; Schloter M; Schöler A Microbiome; 2017 Sep; 5(1):118. PubMed ID: 28893308 [TBL] [Abstract][Full Text] [Related]
20. Impacts of environmental factors on microbial diversity, distribution patterns and syntrophic correlation in anaerobic processes. Yin Q; Wang Z; Wu G Arch Microbiol; 2019 Jul; 201(5):603-614. PubMed ID: 30739132 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]