BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 32216194)

  • 1. [Gene expression profiles in normal human prostate epithelial cells exposed to low-dose cadmium: A bioinformatics analysis].
    Guo YS; Xu XF; Li N; Sun N; Duan LF
    Zhonghua Nan Ke Xue; 2019 Feb; 25(2):103-109. PubMed ID: 32216194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome analyses in normal prostate epithelial cells exposed to low-dose cadmium: oncogenic and immunomodulations involving the action of tumor necrosis factor.
    Bakshi S; Zhang X; Godoy-Tundidor S; Cheng RY; Sartor MA; Medvedovic M; Ho SM
    Environ Health Perspect; 2008 Jun; 116(6):769-76. PubMed ID: 18560533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Impact of high-fat diet on gene expression in mouse prostate tissue].
    Guo YS; Xu XF; Li N; Sun N; Duan LF
    Zhonghua Nan Ke Xue; 2021 Aug; 27(8):675-679. PubMed ID: 34914237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.
    Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J
    Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the PI3K/Akt pathway in cadmium induced malignant transformation of normal prostate epithelial cells.
    Kulkarni P; Dasgupta P; Bhat NS; Hashimoto Y; Saini S; Shahryari V; Yamamura S; Shiina M; Tanaka Y; Dahiya R; Majid S
    Toxicol Appl Pharmacol; 2020 Dec; 409():115308. PubMed ID: 33129824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the autophagy gene expression profile of pancreatic cancer based on autophagy-related protein microtubule-associated protein 1A/1B-light chain 3.
    Yang YH; Zhang YX; Gui Y; Liu JB; Sun JJ; Fan H
    World J Gastroenterol; 2019 May; 25(17):2086-2098. PubMed ID: 31114135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinformatic analysis of pivotal genes associated with septic shock.
    Liu SY; Zhang L; Zhang Y; Zhen Y; Wu YF
    J Biol Regul Homeost Agents; 2017; 31(4):935-941. PubMed ID: 29254296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profiling of differentially expressed genes in cadmium-induced prostate carcinogenesis.
    Kolluru V; Tyagi A; Chandrasekaran B; Damodaran C
    Toxicol Appl Pharmacol; 2019 Jul; 375():57-63. PubMed ID: 31082426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying hub genes and potential mechanisms associated with senescence in human annulus cells by gene expression profiling and bioinformatics analysis.
    Liu C; Chen N; Huang K; Jiang M; Liang H; Sun Z; Tian J; Wang D
    Mol Med Rep; 2018 Mar; 17(3):3465-3472. PubMed ID: 29286093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitor of differentiation 1 (ID1) promotes cell survival and proliferation of prostate epithelial cells.
    Schmidt M; Asirvatham AJ; Chaudhary J
    Cell Mol Biol Lett; 2010 Jun; 15(2):272-95. PubMed ID: 20186495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction and analysis of mRNA, miRNA, lncRNA, and TF regulatory networks reveal the key genes associated with prostate cancer.
    Ye Y; Li SL; Wang SY
    PLoS One; 2018; 13(8):e0198055. PubMed ID: 30138363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel transcriptional network for the androgen receptor in human epididymis epithelial cells.
    Yang R; Browne JA; Eggener SE; Leir SH; Harris A
    Mol Hum Reprod; 2018 Sep; 24(9):433-443. PubMed ID: 30016502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of key genes in prostate cancer gene expression profile by bioinformatics.
    Lu W; Ding Z
    Andrologia; 2019 Feb; 51(1):e13169. PubMed ID: 30311263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microarray-based data mining reveals key genes and potential therapeutic drugs for Cadmium-induced prostate cell malignant transformation.
    Xiang Y; Zhang L; Huang Y; Ling J; Zhuo W
    Environ Toxicol Pharmacol; 2019 May; 68():141-147. PubMed ID: 30897525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated bioinformatics analysis for differentially expressed genes and signaling pathways identification in gastric cancer.
    Yang C; Gong A
    Int J Med Sci; 2021; 18(3):792-800. PubMed ID: 33437215
    [No Abstract]   [Full Text] [Related]  

  • 16. Identification of key genes and pathways in castrate-resistant prostate cancer by integrated bioinformatics analysis.
    Wu YP; Ke ZB; Lin F; Wen YA; Chen S; Li XD; Chen SH; Sun XL; Huang JB; Zheng QS; Xue XY; Wei Y; Xu N
    Pathol Res Pract; 2020 Oct; 216(10):153109. PubMed ID: 32853947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of miR-452-5p in the tumorigenesis of prostate cancer: A study based on the Cancer Genome Atl(TCGA), Gene Expression Omnibus (GEO), and bioinformatics analysis.
    Gao L; Zhang LJ; Li SH; Wei LL; Luo B; He RQ; Xia S
    Pathol Res Pract; 2018 May; 214(5):732-749. PubMed ID: 29559248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell Stress Induced Stressome Release Including Damaged Membrane Vesicles and Extracellular HSP90 by Prostate Cancer Cells.
    Eguchi T; Sogawa C; Ono K; Matsumoto M; Tran MT; Okusha Y; Lang BJ; Okamoto K; Calderwood SK
    Cells; 2020 Mar; 9(3):. PubMed ID: 32204513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinformatics methods for identifying differentially expressed genes and signaling pathways in nano-silica stimulated macrophages.
    Zhang L; Hao C; Li J; Qu Y; Bao L; Li Y; Yue Z; Zhang M; Yu X; Chen H; Zhang J; Wang D; Yao W
    Tumour Biol; 2017 Jun; 39(6):1010428317709284. PubMed ID: 28653889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of key genes and pathways of diagnosis and prognosis in cervical cancer by bioinformatics analysis.
    Yang HJ; Xue JM; Li J; Wan LH; Zhu YX
    Mol Genet Genomic Med; 2020 Jun; 8(6):e1200. PubMed ID: 32181600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.