These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32216745)

  • 1. HeMoQuest: a webserver for qualitative prediction of transient heme binding to protein motifs.
    Paul George AA; Lacerda M; Syllwasschy BF; Hopp MT; Wißbrock A; Imhof D
    BMC Bioinformatics; 2020 Mar; 21(1):124. PubMed ID: 32216745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HEMEsPred: Structure-Based Ligand-Specific Heme Binding Residues Prediction by Using Fast-Adaptive Ensemble Learning Scheme.
    Zhang J; Chai H; Gao B; Yang G; Ma Z
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):147-156. PubMed ID: 28029626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting functional sites with an automated algorithm suitable for heterogeneous datasets.
    La D; Livesay DR
    BMC Bioinformatics; 2005 May; 6():116. PubMed ID: 15890082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines.
    Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient protein-protein interface prediction: datasets, features, algorithms, and the RAD-T predictor.
    Bendell CJ; Liu S; Aumentado-Armstrong T; Istrate B; Cernek PT; Khan S; Picioreanu S; Zhao M; Murgita RA
    BMC Bioinformatics; 2014 Mar; 15():82. PubMed ID: 24661439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ProInflam: a webserver for the prediction of proinflammatory antigenicity of peptides and proteins.
    Gupta S; Madhu MK; Sharma AK; Sharma VK
    J Transl Med; 2016 Jun; 14(1):178. PubMed ID: 27301453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information.
    Liu R; Hu J
    BMC Bioinformatics; 2011 May; 12():207. PubMed ID: 21612668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.
    Abbasi WA; Asif A; Andleeb S; Minhas FUAA
    Proteins; 2017 Sep; 85(9):1724-1740. PubMed ID: 28598584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heme interacts with histidine- and tyrosine-based protein motifs and inhibits enzymatic activity of chloramphenicol acetyltransferase from Escherichia coli.
    Brewitz HH; Goradia N; Schubert E; Galler K; Kühl T; Syllwasschy B; Popp J; Neugebauer U; Hagelueken G; Schiemann O; Ohlenschläger O; Imhof D
    Biochim Biophys Acta; 2016 Jun; 1860(6):1343-53. PubMed ID: 27015758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular basis of transient heme-protein interactions: analysis, concept and implementation.
    Wißbrock A; Paul George AA; Brewitz HH; Kühl T; Imhof D
    Biosci Rep; 2019 Jan; 39(1):. PubMed ID: 30622148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PlantLoc: an accurate web server for predicting plant protein subcellular localization by substantiality motif.
    Tang S; Li T; Cong P; Xiong W; Wang Z; Sun J
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W441-7. PubMed ID: 23729470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A two-layered machine learning method to identify protein O-GlcNAcylation sites with O-GlcNAc transferase substrate motifs.
    Kao HJ; Huang CH; Bretaña NA; Lu CT; Huang KY; Weng SL; Lee TY
    BMC Bioinformatics; 2015; 16 Suppl 18(Suppl 18):S10. PubMed ID: 26680539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TrawlerWeb: an online de novo motif discovery tool for next-generation sequencing datasets.
    Dang LT; Tondl M; Chiu MHH; Revote J; Paten B; Tano V; Tokolyi A; Besse F; Quaife-Ryan G; Cumming H; Drvodelic MJ; Eichenlaub MP; Hallab JC; Stolper JS; Rossello FJ; Bogoyevitch MA; Jans DA; Nim HT; Porrello ER; Hudson JE; Ramialison M
    BMC Genomics; 2018 Apr; 19(1):238. PubMed ID: 29621972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iM-Seeker: a webserver for DNA i-motifs prediction and scoring via automated machine learning.
    Yu H; Li F; Yang B; Qi Y; Guneri D; Chen W; Waller ZAE; Li K; Ding Y
    Nucleic Acids Res; 2024 Jul; 52(W1):W19-W28. PubMed ID: 38676949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SCMHBP: prediction and analysis of heme binding proteins using propensity scores of dipeptides.
    Liou YF; Charoenkwan P; Srinivasulu Y; Vasylenko T; Lai SC; Lee HC; Chen YH; Huang HL; Ho SY
    BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S4. PubMed ID: 25522279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs.
    Obenauer JC; Cantley LC; Yaffe MB
    Nucleic Acids Res; 2003 Jul; 31(13):3635-41. PubMed ID: 12824383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory motif finding by logic regression.
    Keles S; van der Laan MJ; Vulpe C
    Bioinformatics; 2004 Nov; 20(16):2799-811. PubMed ID: 15166027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MDD-SOH: exploiting maximal dependence decomposition to identify S-sulfenylation sites with substrate motifs.
    Bui VM; Lu CT; Ho TT; Lee TY
    Bioinformatics; 2016 Jan; 32(2):165-72. PubMed ID: 26411868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DILIMOT: discovery of linear motifs in proteins.
    Neduva V; Russell RB
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W350-5. PubMed ID: 16845024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.