These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
737 related articles for article (PubMed ID: 32216826)
1. Immune microenvironment in ductal carcinoma in situ: a comparison with invasive carcinoma of the breast. Kim M; Chung YR; Kim HJ; Woo JW; Ahn S; Park SY Breast Cancer Res; 2020 Mar; 22(1):32. PubMed ID: 32216826 [TBL] [Abstract][Full Text] [Related]
2. Higher densities of tumour-infiltrating lymphocytes and CD4 Thike AA; Chen X; Koh VCY; Binte Md Nasir ND; Yeong JPS; Bay BH; Tan PH Histopathology; 2020 May; 76(6):852-864. PubMed ID: 31883279 [TBL] [Abstract][Full Text] [Related]
3. The prognostic significance of immune microenvironment in breast ductal carcinoma in situ. Toss MS; Abidi A; Lesche D; Joseph C; Mahale S; Saunders H; Kader T; Miligy IM; Green AR; Gorringe KL; Rakha EA Br J Cancer; 2020 May; 122(10):1496-1506. PubMed ID: 32203210 [TBL] [Abstract][Full Text] [Related]
4. Functional CD3 Lv S; Wang S; Qiao G; Wang X; Zhou X; Yan F; Li Y; Wang S; Morse MA; Hobeika A; Ren J; Lyerly HK Clin Breast Cancer; 2019 Oct; 19(5):e617-e623. PubMed ID: 31101455 [TBL] [Abstract][Full Text] [Related]
5. Ductal carcinoma in situ of the breast: immune cell composition according to subtype. Agahozo MC; van Bockstal MR; Groenendijk FH; van den Bosch TPP; Westenend PJ; van Deurzen CHM Mod Pathol; 2020 Feb; 33(2):196-205. PubMed ID: 31375764 [TBL] [Abstract][Full Text] [Related]
6. The immune microenvironment of breast ductal carcinoma in situ. Thompson E; Taube JM; Elwood H; Sharma R; Meeker A; Warzecha HN; Argani P; Cimino-Mathews A; Emens LA Mod Pathol; 2016 Mar; 29(3):249-58. PubMed ID: 26769139 [TBL] [Abstract][Full Text] [Related]
7. Role of CXCL10 in the progression of in situ to invasive carcinoma of the breast. Kim M; Choi HY; Woo JW; Chung YR; Park SY Sci Rep; 2021 Sep; 11(1):18007. PubMed ID: 34504204 [TBL] [Abstract][Full Text] [Related]
8. Analysis of tumour-infiltrating lymphocytes reveals two new biologically different subgroups of breast ductal carcinoma in situ. Beguinot M; Dauplat MM; Kwiatkowski F; Lebouedec G; Tixier L; Pomel C; Penault-Llorca F; Radosevic-Robin N BMC Cancer; 2018 Feb; 18(1):129. PubMed ID: 29394917 [TBL] [Abstract][Full Text] [Related]
9. Expression of HLA class I is associated with immune cell infiltration and patient outcome in breast cancer. Han SH; Kim M; Chung YR; Woo JW; Choi HY; Park SY Sci Rep; 2022 Nov; 12(1):20367. PubMed ID: 36437379 [TBL] [Abstract][Full Text] [Related]
10. Relationship of the Breast Ductal Carcinoma Hendry S; Pang JB; Byrne DJ; Lakhani SR; Cummings MC; Campbell IG; Mann GB; Gorringe KL; Fox SB Clin Cancer Res; 2017 Sep; 23(17):5210-5217. PubMed ID: 28611201 [No Abstract] [Full Text] [Related]
11. CD8(+) tumor-infiltrating lymphocytes contribute to spontaneous "healing" in HER2-positive ductal carcinoma in situ. Morita M; Yamaguchi R; Tanaka M; Tse GM; Yamaguchi M; Kanomata N; Naito Y; Akiba J; Hattori S; Minami S; Eguchi S; Yano H Cancer Med; 2016 Jul; 5(7):1607-18. PubMed ID: 27061242 [TBL] [Abstract][Full Text] [Related]
12. Prognostic significance of tumour infiltrating B lymphocytes in breast ductal carcinoma in situ. Miligy I; Mohan P; Gaber A; Aleskandarany MA; Nolan CC; Diez-Rodriguez M; Mukherjee A; Chapman C; Ellis IO; Green AR; Rakha EA Histopathology; 2017 Aug; 71(2):258-268. PubMed ID: 28326600 [TBL] [Abstract][Full Text] [Related]
13. Breast ductal Carcinoma in situ associated with microinvasion induces immunological response and predicts ipsilateral invasive recurrence. Chen XY; Thike AA; Koh VCY; Nasir NDM; Bay BH; Tan PH Virchows Arch; 2021 Apr; 478(4):679-686. PubMed ID: 33140128 [TBL] [Abstract][Full Text] [Related]
14. Prognostic significance of S100A8-positive immune cells in relation to other immune cell infiltration in pre-invasive and invasive breast cancers. Woo JW; Chung YR; Kim M; Choi HY; Ahn S; Park SY Cancer Immunol Immunother; 2021 May; 70(5):1365-1378. PubMed ID: 33146829 [TBL] [Abstract][Full Text] [Related]
15. Characterizing the immune microenvironment in high-risk ductal carcinoma in situ of the breast. Campbell MJ; Baehner F; O'Meara T; Ojukwu E; Han B; Mukhtar R; Tandon V; Endicott M; Zhu Z; Wong J; Krings G; Au A; Gray JW; Esserman L Breast Cancer Res Treat; 2017 Jan; 161(1):17-28. PubMed ID: 27785654 [TBL] [Abstract][Full Text] [Related]
16. Response to Neoadjuvant Chemotherapy in Invasive Breast Cancer Predicted by CD4+, CD8+, and FOXP3+ Tumor-Infiltrating Lymphocytes. Rustamadji P; Wiyarta E; Pramono M; Maulanisa SC Asian Pac J Cancer Prev; 2024 May; 25(5):1607-1613. PubMed ID: 38809632 [TBL] [Abstract][Full Text] [Related]
17. Prognostic role of immune infiltrates in breast ductal carcinoma in situ. Chen XY; Yeong J; Thike AA; Bay BH; Tan PH Breast Cancer Res Treat; 2019 Aug; 177(1):17-27. PubMed ID: 31134489 [TBL] [Abstract][Full Text] [Related]
18. PD-L1 (B7-H1) expression and the immune tumor microenvironment in primary and metastatic breast carcinomas. Cimino-Mathews A; Thompson E; Taube JM; Ye X; Lu Y; Meeker A; Xu H; Sharma R; Lecksell K; Cornish TC; Cuka N; Argani P; Emens LA Hum Pathol; 2016 Jan; 47(1):52-63. PubMed ID: 26527522 [TBL] [Abstract][Full Text] [Related]
19. Expression of immune checkpoint regulators, cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death-ligand 1 (PD-L1), in female breast carcinomas. Kassardjian A; Shintaku PI; Moatamed NA PLoS One; 2018; 13(4):e0195958. PubMed ID: 29672601 [TBL] [Abstract][Full Text] [Related]
20. FOXP3-positive regulatory T lymphocytes and epithelial FOXP3 expression in synchronous normal, ductal carcinoma in situ, and invasive cancer of the breast. Lal A; Chan L; Devries S; Chin K; Scott GK; Benz CC; Chen YY; Waldman FM; Hwang ES Breast Cancer Res Treat; 2013 Jun; 139(2):381-90. PubMed ID: 23712790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]