BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

543 related articles for article (PubMed ID: 32216876)

  • 1. Stimulus salience determines defensive behaviors elicited by aversively conditioned serial compound auditory stimuli.
    Hersman S; Allen D; Hashimoto M; Brito SI; Anthony TE
    Elife; 2020 Mar; 9():. PubMed ID: 32216876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A prefrontal-bed nucleus of the stria terminalis circuit limits fear to uncertain threat.
    Glover LR; McFadden KM; Bjorni M; Smith SR; Rovero NG; Oreizi-Esfahani S; Yoshida T; Postle AF; Nonaka M; Halladay LR; Holmes A
    Elife; 2020 Dec; 9():. PubMed ID: 33319747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fear conditioned cue orchestrates a suite of behaviors in rats.
    Chu A; Gordon NT; DuBois AM; Michel CB; Hanrahan KE; Williams DC; Anzellotti S; McDannald MA
    Elife; 2024 May; 13():. PubMed ID: 38770736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Pavlovian Fear Conditioning Paradigm to Study Freezing and Flight Behavior.
    Borkar CD; Fadok JP
    J Vis Exp; 2021 Jan; (167):. PubMed ID: 33491674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cue-dependent safety and fear learning in a discriminative auditory fear conditioning paradigm in the mouse.
    Takemoto M; Song WJ
    Learn Mem; 2019 Aug; 26(8):284-290. PubMed ID: 31308247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Avoidance learning facilitates temporal processing in the primary auditory cortex.
    Leon MI; Poytress BS; Weinberger NM
    Neurobiol Learn Mem; 2008 Sep; 90(2):347-57. PubMed ID: 18603453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavioral and brain mechanisms mediating conditioned flight behavior in rats.
    Totty MS; Warren N; Huddleston I; Ramanathan KR; Ressler RL; Oleksiak CR; Maren S
    Sci Rep; 2021 Apr; 11(1):8215. PubMed ID: 33859260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebellar modulation of memory encoding in the periaqueductal grey and fear behaviour.
    Lawrenson C; Paci E; Pickford J; Drake RAR; Lumb BM; Apps R
    Elife; 2022 Mar; 11():. PubMed ID: 35287795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning-Dependent and -Independent Enhancement of Mitral/Tufted Cell Glomerular Odor Responses Following Olfactory Fear Conditioning in Awake Mice.
    Ross JM; Fletcher ML
    J Neurosci; 2018 May; 38(20):4623-4640. PubMed ID: 29669746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced generalization of auditory conditioned fear in juvenile mice.
    Ito W; Pan BX; Yang C; Thakur S; Morozov A
    Learn Mem; 2009 Mar; 16(3):187-92. PubMed ID: 19228588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pragmatic comparison of noise burst and electric shock unconditioned stimuli for fear conditioning research with many trials.
    Sperl MFJ; Panitz C; Hermann C; Mueller EM
    Psychophysiology; 2016 Sep; 53(9):1352-65. PubMed ID: 27286734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Olfactory fear conditioning paradigm in rats: effects of midazolam, propranolol or scopolamine.
    Kroon JA; Carobrez AP
    Neurobiol Learn Mem; 2009 Jan; 91(1):32-40. PubMed ID: 19010431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemispheric differences in protein kinase C betaII levels in the rat amygdala: baseline asymmetry and lateralized changes associated with cue and context in a classical fear conditioning paradigm.
    Orman R; Stewart M
    Neuroscience; 2007 Feb; 144(3):797-807. PubMed ID: 17118565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure to a contextually neutral stressor potentiates fear conditioning in juvenile rainbow trout, Oncorhynchus mykiss.
    Demuth BS; Ferrari MCO; Weber LP; Janz DM; Chivers DP
    Horm Behav; 2017 Aug; 94():124-134. PubMed ID: 28712589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological memory in primary auditory cortex: characteristics and mechanisms.
    Weinberger NM
    Neurobiol Learn Mem; 1998; 70(1-2):226-51. PubMed ID: 9753599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified Fear Conditioning for Inducing Flight Behaviors in Mice.
    Furuyama T; Yamamoto R; Kato N; Ono M
    J Vis Exp; 2023 Dec; (202):. PubMed ID: 38163275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between fos production and classical fear conditioning: effects of novelty, latent inhibition, and unconditioned stimulus preexposure.
    Radulovic J; Kammermeier J; Spiess J
    J Neurosci; 1998 Sep; 18(18):7452-61. PubMed ID: 9736664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of immediate early genes in the mouse auditory cortex after auditory cued fear conditioning to complex sounds.
    Peter M; Scheuch H; Burkard TR; Tinter J; Wernle T; Rumpel S
    Genes Brain Behav; 2012 Apr; 11(3):314-24. PubMed ID: 22212853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elemental and configural threat learning bias extinction generalization.
    Goldfarb EV; Blow T; Dunsmoor JE; Phelps EA
    Neurobiol Learn Mem; 2021 Apr; 180():107405. PubMed ID: 33609739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residual fear of the conditioned stimulus as a function of response prevention after avoidance or classical defensive conditioning in the rat.
    Monti PM; Smith NF
    J Exp Psychol Gen; 1976 Jun; 105(2):148-62. PubMed ID: 1003117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.