BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 32217026)

  • 1. Fermentative production of sulfur-containing amino acid with engineering putative l-cystathionine and l-cysteine uptake systems in Escherichia coli.
    Yamazaki S; Ziyatdinov MK; Nonaka G
    J Biosci Bioeng; 2020 Jul; 130(1):14-19. PubMed ID: 32217026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defect of RNA pyrophosphohydrolase RppH enhances fermentative production of L-cysteine in Escherichia coli.
    Morigasaki S; Umeyama A; Kawano Y; Aizawa Y; Ohtsu I
    J Gen Appl Microbiol; 2021 Feb; 66(6):307-314. PubMed ID: 32779574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial production of sulfur-containing amino acids using metabolically engineered Escherichia coli.
    Wang L; Guo Y; Shen Y; Yang K; Cai X; Zhang B; Liu Z; Zheng Y
    Biotechnol Adv; 2024; 73():108353. PubMed ID: 38593935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved fermentative L-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli.
    Kawano Y; Onishi F; Shiroyama M; Miura M; Tanaka N; Oshiro S; Nonaka G; Nakanishi T; Ohtsu I
    Appl Microbiol Biotechnol; 2017 Sep; 101(18):6879-6889. PubMed ID: 28756590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate recognition and ATPase activity of the
    Sabrialabed S; Yang JG; Yariv E; Ben-Tal N; Lewinson O
    J Biol Chem; 2020 Apr; 295(16):5245-5256. PubMed ID: 32144203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fitness of Chassis Cells and Metabolic Pathways for l-Cysteine Overproduction in
    Liu H; Wang Y; Hou Y; Li Z
    J Agric Food Chem; 2020 Dec; 68(50):14928-14937. PubMed ID: 33264003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of Sulfur Conversion Rate in the Production of l-Cysteine by Engineered
    Liu H; Hou Y; Wang Y; Li Z
    J Agric Food Chem; 2020 Jan; 68(1):250-257. PubMed ID: 31823602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occurrence of transsulfuration in synthesis of L-homocysteine in an extremely thermophilic bacterium, Thermus thermophilus HB8.
    Yamagata S; Ichioka K; Goto K; Mizuno Y; Iwama T
    J Bacteriol; 2001 Mar; 183(6):2086-92. PubMed ID: 11222609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of the yciW gene in l-cysteine and l-methionine metabolism in Escherichia coli.
    Kawano Y; Ohtsu I; Tamakoshi A; Shiroyama M; Tsuruoka A; Saiki K; Takumi K; Nonaka G; Nakanishi T; Hishiki T; Suematsu M; Takagi H
    J Biosci Bioeng; 2015 Mar; 119(3):310-3. PubMed ID: 25277519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ydjN encodes an S-sulfocysteine transporter required by Escherichia coli for growth on S-sulfocysteine as a sulfur source.
    Yamazaki S; Takei K; Nonaka G
    FEMS Microbiol Lett; 2016 Sep; 363(17):. PubMed ID: 27481704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methionine-to-cysteine recycling in Klebsiella aerogenes.
    Seiflein TA; Lawrence JG
    J Bacteriol; 2001 Jan; 183(1):336-46. PubMed ID: 11114934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directed evolution of an EamB transporter for improved L-cysteine tolerance and production in Escherichia coli.
    Liu G; Ding C; Ju Y; Ma Z; Wei L; Liu J; Liu Q; Xu N
    FEMS Microbiol Lett; 2022 Feb; 368(21-24):. PubMed ID: 35090013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current understanding of sulfur assimilation metabolism to biosynthesize L-cysteine and recent progress of its fermentative overproduction in microorganisms.
    Kawano Y; Suzuki K; Ohtsu I
    Appl Microbiol Biotechnol; 2018 Oct; 102(19):8203-8211. PubMed ID: 30046857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of L-cysteine production by disruption of yciW in Escherichia coli.
    Kawano Y; Ohtsu I; Takumi K; Tamakoshi A; Nonaka G; Funahashi E; Ihara M; Takagi H
    J Biosci Bioeng; 2015 Feb; 119(2):176-9. PubMed ID: 25103863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of drug transporter genes on cysteine export and overproduction in Escherichia coli.
    Yamada S; Awano N; Inubushi K; Maeda E; Nakamori S; Nishino K; Yamaguchi A; Takagi H
    Appl Environ Microbiol; 2006 Jul; 72(7):4735-42. PubMed ID: 16820466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Escherichia coli K-12 Lacks a High-Affinity Assimilatory Cysteine Importer.
    Zhou Y; Imlay JA
    mBio; 2020 Jun; 11(3):. PubMed ID: 32518189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological Roles and Adverse Effects of the Two Cystine Importers of Escherichia coli.
    Chonoles Imlay KR; Korshunov S; Imlay JA
    J Bacteriol; 2015 Dec; 197(23):3629-44. PubMed ID: 26350134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a CysB-regulated gene involved in glutathione transport in Escherichia coli.
    Parry J; Clark DP
    FEMS Microbiol Lett; 2002 Mar; 209(1):81-5. PubMed ID: 12007658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic stress constrains microbial L-cysteine production in Escherichia coli by accelerating transposition through mobile genetic elements.
    Heieck K; Arnold ND; Brück TB
    Microb Cell Fact; 2023 Jan; 22(1):10. PubMed ID: 36642733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Level Production of l-Methionine by Dynamic Deregulation of Metabolism with Engineered Nonauxotroph
    Niu K; Fu Q; Mei ZL; Ge LR; Guan AQ; Liu ZQ; Zheng YG
    ACS Synth Biol; 2023 Feb; 12(2):492-501. PubMed ID: 36701126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.