These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32217210)

  • 1. Performance among different types of myocontrolled tasks is not related.
    Heerschop A; van der Sluis CK; Otten E; Bongers RM
    Hum Mov Sci; 2020 Apr; 70():102592. PubMed ID: 32217210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer of mode switching performance: from training to upper-limb prosthesis use.
    Heerschop A; van der Sluis CK; Bongers RM
    J Neuroeng Rehabil; 2021 May; 18(1):85. PubMed ID: 34022945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer.
    van Dijk L; van der Sluis CK; van Dijk HW; Bongers RM
    PLoS One; 2016; 11(8):e0160817. PubMed ID: 27556154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Training prosthesis users to switch between modes of a multi-articulating prosthetic hand.
    Heerschop A; van der Sluis CK; Bongers RM
    Disabil Rehabil; 2024 Jan; 46(1):187-198. PubMed ID: 36541182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Task-Oriented Gaming for Transfer to Prosthesis Use.
    van Dijk L; van der Sluis CK; van Dijk HW; Bongers RM
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1384-1394. PubMed ID: 26625419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progressive unsupervised control of myoelectric upper limbs.
    Gigli A; Gijsberts A; Nowak M; Vujaklija I; Castellini C
    J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37883969
    [No Abstract]   [Full Text] [Related]  

  • 7. Fixed muscle synergies and their potential to improve the intuitive control of myoelectric assistive technology for upper extremities.
    Valk TA; Mouton LJ; Otten E; Bongers RM
    J Neuroeng Rehabil; 2019 Jan; 16(1):6. PubMed ID: 30616663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous assessment and training of an upper-limb amputee using incremental machine-learning-based myocontrol: a single-case experimental design.
    Nowak M; Bongers RM; van der Sluis CK; Albu-Schäffer A; Castellini C
    J Neuroeng Rehabil; 2023 Apr; 20(1):39. PubMed ID: 37029432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring and monitoring skill learning in closed-loop myoelectric hand prostheses using speed-accuracy tradeoffs.
    Mamidanna P; Gholinezhad S; Farina D; Dideriksen JL; Dosen S
    J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38417146
    [No Abstract]   [Full Text] [Related]  

  • 10. Virtual Training of the Myosignal.
    Terlaak B; Bouwsema H; van der Sluis CK; Bongers RM
    PLoS One; 2015; 10(9):e0137161. PubMed ID: 26351838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skill assessment in upper limb myoelectric prosthesis users: Validation of a clinically feasible method for characterising upper limb temporal and amplitude variability during the performance of functional tasks.
    Thies SB; Kenney LP; Sobuh M; Galpin A; Kyberd P; Stine R; Major MJ
    Med Eng Phys; 2017 Sep; 47():137-143. PubMed ID: 28684214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning to control opening and closing a myoelectric hand.
    Bouwsema H; van der Sluis CK; Bongers RM
    Arch Phys Med Rehabil; 2010 Sep; 91(9):1442-6. PubMed ID: 20801265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visuomotor behaviours when using a myoelectric prosthesis.
    Sobuh MM; Kenney LP; Galpin AJ; Thies SB; McLaughlin J; Kulkarni J; Kyberd P
    J Neuroeng Rehabil; 2014 Apr; 11():72. PubMed ID: 24758375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EMG Biofeedback for online predictive control of grasping force in a myoelectric prosthesis.
    Dosen S; Markovic M; Somer K; Graimann B; Farina D
    J Neuroeng Rehabil; 2015 Jun; 12():55. PubMed ID: 26088323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in performance over time while learning to use a myoelectric prosthesis.
    Bouwsema H; van der Sluis CK; Bongers RM
    J Neuroeng Rehabil; 2014 Feb; 11():16. PubMed ID: 24568148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control.
    Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N
    J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delaying feedback during pre-device training facilitates the retention of novel myoelectric skills: a laboratory and home-based study.
    Stuttaford SA; Dupan SSG; Nazarpour K; Dyson M
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 36928264
    [No Abstract]   [Full Text] [Related]  

  • 18. The development of a myoelectric training tool for above-elbow amputees.
    Dawson MR; Fahimi F; Carey JP
    Open Biomed Eng J; 2012; 6():5-15. PubMed ID: 22383905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel myoelectric training device for upper limb prostheses.
    Clingman R; Pidcoe P
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):879-85. PubMed ID: 24710835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Myoelectric Control Learning Using Multi-Session Game-Based Training.
    Tabor A; Bateman S; Scheme E
    IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1680-1689. PubMed ID: 30010580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.