These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 32217417)
21. Spatiotemporal variations of pharmacologically active compounds in surface waters of a summer holiday destination. Maasz G; Mayer M; Zrinyi Z; Molnar E; Kuzma M; Fodor I; Pirger Z; Takács P Sci Total Environ; 2019 Aug; 677():545-555. PubMed ID: 31063896 [TBL] [Abstract][Full Text] [Related]
22. Occurrence of pharmaceutically active compounds in surface waters of the Henares-Jarama-Tajo River system (Madrid, Spain) and a potential risk characterization. Fernández C; González-Doncel M; Pro J; Carbonell G; Tarazona JV Sci Total Environ; 2010 Jan; 408(3):543-51. PubMed ID: 19889447 [TBL] [Abstract][Full Text] [Related]
23. Chinese physicians' attitudes toward eco-directed sustainable prescribing from the perspective of ecopharmacovigilance: a cross-sectional study. Wang J; Li S; He B BMJ Open; 2020 Jun; 10(6):e035502. PubMed ID: 32487575 [TBL] [Abstract][Full Text] [Related]
24. Regional assessment of concentrations and sources of pharmaceutically active compounds, pesticides, nitrate, and E. coli in post-glacial aquifer environments (Canada). Saby M; Larocque M; Pinti DL; Barbecot F; Gagné S; Barnetche D; Cabana H Sci Total Environ; 2017 Feb; 579():557-568. PubMed ID: 27871751 [TBL] [Abstract][Full Text] [Related]
25. Quantitatively identifying the emission sources of pharmaceutically active compounds (PhACs) in the surface water: Method development, verification and application in Huangpu River, China. Kan X; Feng S; Mei X; Sui Q; Zhao W; Lyu S; Sun S; Zhang Z; Yu G Sci Total Environ; 2022 Apr; 815():152783. PubMed ID: 34990669 [TBL] [Abstract][Full Text] [Related]
26. Characterization of pharmaceutically active compounds in Beijing, China: Occurrence pattern, spatiotemporal distribution and its environmental implication. Ma R; Wang B; Yin L; Zhang Y; Deng S; Huang J; Wang Y; Yu G J Hazard Mater; 2017 Feb; 323(Pt A):147-155. PubMed ID: 27236837 [TBL] [Abstract][Full Text] [Related]
27. Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid Region (Spain) and potential ecotoxicological risk. Valcárcel Y; González Alonso S; Rodríguez-Gil JL; Gil A; Catalá M Chemosphere; 2011 Sep; 84(10):1336-48. PubMed ID: 21641628 [TBL] [Abstract][Full Text] [Related]
28. Monitoring of pharmaceutically active compounds on the Guadalquivir River basin (Spain): occurrence and risk assessment. Martín J; Camacho-Muñoz D; Santos JL; Aparicio I; Alonso E J Environ Monit; 2011 Jul; 13(7):2042-9. PubMed ID: 21666922 [TBL] [Abstract][Full Text] [Related]
29. Occurrence and concentration of caffeine in Oregon coastal waters. Rodriguez del Rey Z; Granek EF; Sylvester S Mar Pollut Bull; 2012 Jul; 64(7):1417-24. PubMed ID: 22647644 [TBL] [Abstract][Full Text] [Related]
30. Caffeine and Paraxanthine as Tracers of Anthropogenic Wastewater in Coastal Lagoons in Yucatan, Mexico. Martínez-Casales Y; León-Aguirre K; Lamas-Cosío E; Noreña-Barroso E; Herrera-Silveira J; Arcega-Cabrera F Bull Environ Contam Toxicol; 2022 Feb; 108(2):182-189. PubMed ID: 35048173 [TBL] [Abstract][Full Text] [Related]
31. Tracking anthropogenic inputs using caffeine, indicator bacteria, and nutrients in rural freshwater and urban marine systems. Peeler KA; Opsahl SP; Chanton JP Environ Sci Technol; 2006 Dec; 40(24):7616-22. PubMed ID: 17256503 [TBL] [Abstract][Full Text] [Related]
32. Caffeine, an anthropogenic marker for wastewater comtamination of surface waters. Buerge II; Poiger T; Müller MD; Buser HR Environ Sci Technol; 2003 Feb; 37(4):691-700. PubMed ID: 12636266 [TBL] [Abstract][Full Text] [Related]
33. Caffeine as an environmental indicator for assessing urban aquatic ecosystems. Ferreira AP Cad Saude Publica; 2005; 21(6):1884-92. PubMed ID: 16410875 [TBL] [Abstract][Full Text] [Related]
34. Occurrence and distribution of pharmaceutical compounds in the Danshuei River Estuary and the Northern Taiwan Strait. Fang TH; Lin CW; Kao CH Mar Pollut Bull; 2019 Sep; 146():509-520. PubMed ID: 31426188 [TBL] [Abstract][Full Text] [Related]
35. Assessment of Sucralose, Caffeine and Acetaminophen as Anthropogenic Tracers in Aquatic Systems Across Florida. Henderson A; Ng B; Landeweer S; Quinete N; Gardinali P Bull Environ Contam Toxicol; 2020 Sep; 105(3):351-357. PubMed ID: 32749513 [TBL] [Abstract][Full Text] [Related]
36. Caffeine as an indicator for the quantification of untreated wastewater in karst systems. Hillebrand O; Nödler K; Licha T; Sauter M; Geyer T Water Res; 2012 Feb; 46(2):395-402. PubMed ID: 22104295 [TBL] [Abstract][Full Text] [Related]
37. Environmental risk assessment of pharmaceuticals at a seasonal holiday destination in the largest freshwater shallow lake in Central Europe. Molnar E; Maasz G; Pirger Z Environ Sci Pollut Res Int; 2021 Nov; 28(42):59233-59243. PubMed ID: 32666449 [TBL] [Abstract][Full Text] [Related]
38. Human-use antibacterial residues in the natural environment of China: implication for ecopharmacovigilance. Wang J; He B; Hu X Environ Monit Assess; 2015 Jun; 187(6):331. PubMed ID: 25947893 [TBL] [Abstract][Full Text] [Related]
39. Caffeine in Boston Harbor seawater. Siegener R; Chen RF Mar Pollut Bull; 2002 May; 44(5):383-7. PubMed ID: 12146820 [TBL] [Abstract][Full Text] [Related]
40. Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Sui Q; Huang J; Deng S; Yu G; Fan Q Water Res; 2010 Jan; 44(2):417-26. PubMed ID: 19674764 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]