These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32217421)

  • 1. Techno-economic performance of HCl and SO
    Dal Pozzo A; Lazazzara L; Antonioni G; Cozzani V
    J Hazard Mater; 2020 Jul; 394():122518. PubMed ID: 32217421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Economics of an integrated approach to control SO2, NOX, HCl, and particulate emissions from power plants.
    Shemwell BE; Ergut A; Levendis YA
    J Air Waste Manag Assoc; 2002 May; 52(5):521-34. PubMed ID: 12022692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study.
    Biganzoli L; Racanella G; Marras R; Rigamonti L
    Waste Manag; 2015 Jan; 35():127-34. PubMed ID: 25465510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High temperature abatement of acid gases from waste incineration. Part I: experimental tests in full scale plants.
    Biganzoli L; Racanella G; Rigamonti L; Marras R; Grosso M
    Waste Manag; 2015 Feb; 36():98-105. PubMed ID: 25465511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of alternative flue gas dry treatment technologies in waste-to-energy processes.
    Dal Pozzo A; Antonioni G; Guglielmi D; Stramigioli C; Cozzani V
    Waste Manag; 2016 May; 51():81-90. PubMed ID: 26951719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Economic and environmental benefits by improved process control strategies in HCl removal from waste-to-energy flue gas.
    Dal Pozzo A; Muratori G; Antonioni G; Cozzani V
    Waste Manag; 2021 Apr; 125():303-315. PubMed ID: 33721703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.
    Svoboda K; Hartman M; Šyc M; Pohořelý M; Kameníková P; Jeremiáš M; Durda T
    J Environ Manage; 2016 Jan; 166():499-511. PubMed ID: 26588812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights on mercury abatement and modeling in a full-scale municipal solid waste incineration flue gas treatment unit.
    Romero LM; Lyczko N; Nzihou A; Antonini G; Moreau E; Richardeau H; Coste C; Madoui S; Durécu S
    Waste Manag; 2020 Jul; 113():270-279. PubMed ID: 32559697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel additive for the reduction of acid gases and NO(x) in municipal waste incinerator flue gas.
    Hall WJ; Williams PT
    Waste Manag Res; 2006 Aug; 24(4):388-96. PubMed ID: 16941997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cost-Effective Manganese Ore Sorbent for Elemental Mercury Removal from Flue Gas.
    Yang Y; Miao S; Liu J; Wang Z; Yu Y
    Environ Sci Technol; 2019 Aug; 53(16):9957-9965. PubMed ID: 31369246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of cross-media effects deriving from the application of lower emission standards for acid pollutants in waste-to-energy plants.
    Dal Pozzo A; Abagnato S; Cozzani V
    Sci Total Environ; 2023 Jan; 856(Pt 2):159159. PubMed ID: 36191699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron blast furnace slag/hydrated lime sorbents for flue gas desulfurization.
    Liu CF; Shih SM
    Environ Sci Technol; 2004 Aug; 38(16):4451-6. PubMed ID: 15382877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation of an oxygen-enriched combustion of municipal solid waste on flue gas emission and combustion performance at a 8 MWth waste-to-energy plant.
    Ma C; Li B; Chen D; Wenga T; Ma W; Lin F; Chen G
    Waste Manag; 2019 Aug; 96():47-56. PubMed ID: 31376969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of SO2, HCl and NOx, control from waste incinerators using a novel additive in a pilot scale reactor.
    Williams PT; Nimmo W; Patsias A; Hall W
    Environ Technol; 2006 May; 27(5):565-74. PubMed ID: 16749624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Air Pollutant Emission Inventory of Waste-to-Energy Plants in China and Prediction by the Artificial Neural Network Approach.
    Ma W; Cui J; Abdoulaye B; Wang Y; Du H; Bourtsalas AC; Chen G
    Environ Sci Technol; 2023 Jan; 57(2):874-883. PubMed ID: 36172640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating source strengths of HCl and SO
    Zhang H; Yu S; Shao L; He P
    J Environ Sci (China); 2019 Jan; 75():370-377. PubMed ID: 30473302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas-phase elemental mercury removal in a simulated combustion flue gas using TiO2 with fluorescent light.
    Cho JH; Lee TG; Eom Y
    J Air Waste Manag Assoc; 2012 Oct; 62(10):1208-13. PubMed ID: 23155867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of waste hardened cement mortar utilization as an alternative sorbent to remove SO
    Liu D; Zhu H; Wu K; Zhao X; Wang F; Liao Q
    J Hazard Mater; 2020 Jun; 392():122492. PubMed ID: 32193119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing sorbents for mercury control in coal-combustion flue gas.
    Sjostrom S; Ebner T; Ley T; Slye R; Richardson C; Machalek T; Richardson M; Chang R
    J Air Waste Manag Assoc; 2002 Aug; 52(8):902-11. PubMed ID: 12184688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The study of modified calcium hydroxides with surfactants for acid gas removal during incineration.
    Tseng HH; Wey MY; Lu CY
    Environ Technol; 2002 Jan; 23(1):109-19. PubMed ID: 11924579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.