These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 32217473)

  • 1. Perturbation Monte Carlo Method for Quantitative Photoacoustic Tomography.
    Leino AA; Lunttila T; Mozumder M; Pulkkinen A; Tarvainen T
    IEEE Trans Med Imaging; 2020 Oct; 39(10):2985-2995. PubMed ID: 32217473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive stochastic Gauss-Newton method with optical Monte Carlo for quantitative photoacoustic tomography.
    Hänninen N; Pulkkinen A; Arridge S; Tarvainen T
    J Biomed Opt; 2022 Apr; 27(8):. PubMed ID: 35396833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of Errors Due to Uncertainties in Ultrasound Sensor Locations in Photoacoustic Tomography.
    Sahlstrom T; Pulkkinen A; Tick J; Leskinen J; Tarvainen T
    IEEE Trans Med Imaging; 2020 Jun; 39(6):2140-2150. PubMed ID: 31940525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of relative error in perturbation Monte Carlo simulations of radiative transport.
    Parsanasab M; Hayakawa C; Spanier J; Shen Y; Venugopalan V
    J Biomed Opt; 2023 Jun; 28(6):065001. PubMed ID: 37293394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative photoacoustic tomography with light fluence compensation based on radiance Monte Carlo model.
    Zheng S; Yingsa H; Meichen S; Qi M
    Phys Med Biol; 2023 Mar; 68(6):. PubMed ID: 36821863
    [No Abstract]   [Full Text] [Related]  

  • 6. Quantitative photoacoustic tomography augmented with surface light measurements.
    Nykänen O; Pulkkinen A; Tarvainen T
    Biomed Opt Express; 2017 Oct; 8(10):4380-4395. PubMed ID: 29082072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic Gauss-Newton method for estimating absorption and scattering in optical tomography with the Monte Carlo method for light transport.
    Kangasniemi J; Mozumder M; Pulkkinen A; Tarvainen T
    Biomed Opt Express; 2024 Aug; 15(8):4925-4942. PubMed ID: 39347007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate Monte Carlo simulation of frequency-domain optical coherence tomography.
    Wang Y; Bai L
    Int J Numer Method Biomed Eng; 2019 Apr; 35(4):e3177. PubMed ID: 30690893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Estimation of Optical Parameters From Photoacoustic Time Series in Quantitative Photoacoustic Tomography.
    Pulkkinen A; Cox BT; Arridge SR; Goh H; Kaipio JP; Tarvainen T
    IEEE Trans Med Imaging; 2016 Nov; 35(11):2497-2508. PubMed ID: 27323361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two schemes for quantitative photoacoustic tomography based on Monte Carlo simulation.
    Liu Y; Jiang H; Yuan Z
    Med Phys; 2016 Jul; 43(7):3987. PubMed ID: 27370117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative photoacoustic tomography using illuminations from a single direction.
    Pulkkinen A; Cox BT; Arridge SR; Kaipio JP; Tarvainen T
    J Biomed Opt; 2015 Mar; 20(3):036015. PubMed ID: 25803187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient inversion strategies for estimating optical properties with Monte Carlo radiative transport models.
    Macdonald C; Arridge S; Powell S
    J Biomed Opt; 2020 Aug; 25(8):. PubMed ID: 32798354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies.
    Bustad A; Terziivanov D; Leary R; Port R; Schumitzky A; Jelliffe R
    Clin Pharmacokinet; 2006; 45(4):365-83. PubMed ID: 16584284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian Image Reconstruction in Quantitative Photoacoustic Tomography.
    Tarvainen T; Pulkkinen A; Cox BT; Kaipio JP; Arridge SR
    IEEE Trans Med Imaging; 2013 Dec; 32(12):2287-98. PubMed ID: 24001987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography.
    Cai C; Rodet T; Legoupil S; Mohammad-Djafari A
    Med Phys; 2013 Nov; 40(11):111916. PubMed ID: 24320449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative photoacoustic tomography using forward and adjoint Monte Carlo models of radiance.
    Hochuli R; Powell S; Arridge S; Cox B
    J Biomed Opt; 2016 Dec; 21(12):126004. PubMed ID: 27918801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional quantitative photoacoustic tomography using an adjoint radiance Monte Carlo model and gradient descent.
    Buchmann J; Kaplan B; Powell S; Prohaska S; Laufer J
    J Biomed Opt; 2019 Jun; 24(6):1-13. PubMed ID: 31172727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter - Part I: Core algorithms and validation.
    Maslowski A; Wang A; Sun M; Wareing T; Davis I; Star-Lack J
    Med Phys; 2018 May; 45(5):1899-1913. PubMed ID: 29509970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphics processing units-accelerated adaptive nonlocal means filter for denoising three-dimensional Monte Carlo photon transport simulations.
    Yuan Y; Yu L; Doğan Z; Fang Q
    J Biomed Opt; 2018 Nov; 23(12):1-9. PubMed ID: 30499265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling of errors due to speed of sound variations in photoacoustic tomography using a Bayesian framework.
    Tick J; Pulkkinen A; Tarvainen T
    Biomed Phys Eng Express; 2019 Nov; 6(1):015003. PubMed ID: 33438591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.