BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32217509)

  • 1. The STEME system: a novel tool for directed evolution
    Hu FY; Wang KJ
    Yi Chuan; 2020 Mar; 42(3):231-235. PubMed ID: 32217509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors.
    Li C; Zhang R; Meng X; Chen S; Zong Y; Lu C; Qiu JL; Chen YH; Li J; Gao C
    Nat Biotechnol; 2020 Jul; 38(7):875-882. PubMed ID: 31932727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base-Editing-Mediated Artificial Evolution of OsALS1 In Planta to Develop Novel Herbicide-Tolerant Rice Germplasms.
    Kuang Y; Li S; Ren B; Yan F; Spetz C; Li X; Zhou X; Zhou H
    Mol Plant; 2020 Apr; 13(4):565-572. PubMed ID: 32001363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Prime editing creates a novel dimension of plant precise genome editing].
    Qin RY; Wei PC
    Yi Chuan; 2020 Jun; 42(6):519-523. PubMed ID: 32694110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of herbicide resistance OsACC1 mutations via in planta prime-editing-library screening in rice.
    Xu R; Liu X; Li J; Qin R; Wei P
    Nat Plants; 2021 Jul; 7(7):888-892. PubMed ID: 34112987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed evolution rice genes with randomly multiplexed sgRNAs assembly of base editors.
    Zhang A; Shan T; Sun Y; Chen Z; Hu J; Hu Z; Ming Z; Zhu Z; Li X; He J; Liu S; Jiang L; Dong X; Wu Y; Wang Y; Liu Y; Li C; Wan J
    Plant Biotechnol J; 2023 Dec; 21(12):2597-2610. PubMed ID: 37571976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Base editing in crops: current advances, limitations and future implications.
    Mishra R; Joshi RK; Zhao K
    Plant Biotechnol J; 2020 Jan; 18(1):20-31. PubMed ID: 31365173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TALEN-Mediated Homologous Recombination Produces Site-Directed DNA Base Change and Herbicide-Resistant Rice.
    Li T; Liu B; Chen CY; Yang B
    J Genet Genomics; 2016 May; 43(5):297-305. PubMed ID: 27180265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial evolution of OsEPSPS through an improved dual cytosine and adenine base editor generated a novel allele conferring rice glyphosate tolerance.
    Zhang C; Zhong X; Li S; Yan L; Li J; He Y; Lin Y; Zhang Y; Xia L
    J Integr Plant Biol; 2023 Sep; 65(9):2194-2203. PubMed ID: 37402157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simplified adenine base editors improve adenine base editing efficiency in rice.
    Hua K; Tao X; Liang W; Zhang Z; Gou R; Zhu JK
    Plant Biotechnol J; 2020 Mar; 18(3):770-778. PubMed ID: 31469505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding the base editing scope in rice by using Cas9 variants.
    Hua K; Tao X; Zhu JK
    Plant Biotechnol J; 2019 Feb; 17(2):499-504. PubMed ID: 30051586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Canadian regulatory aspects of gene editing technologies.
    Ellens KW; Levac D; Pearson C; Savoie A; Strand N; Louter J; Tibelius C
    Transgenic Res; 2019 Aug; 28(Suppl 2):165-168. PubMed ID: 31321700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Regulatory Status of Genome-edited Crops.
    Wolt JD; Wang K; Yang B
    Plant Biotechnol J; 2016 Feb; 14(2):510-8. PubMed ID: 26251102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome editor-directed in vivo library diversification.
    Cheng C; Zhou M; Su Q; Steigmeyer A; Niu J
    Cell Chem Biol; 2021 Aug; 28(8):1109-1118. PubMed ID: 34107297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retroelement-Based Genome Editing and Evolution.
    Simon AJ; Morrow BR; Ellington AD
    ACS Synth Biol; 2018 Nov; 7(11):2600-2611. PubMed ID: 30256621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice.
    Ren B; Liu L; Li S; Kuang Y; Wang J; Zhang D; Zhou X; Lin H; Zhou H
    Mol Plant; 2019 Jul; 12(7):1015-1026. PubMed ID: 30928635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perspectives on the Application of Genome-Editing Technologies in Crop Breeding.
    Hua K; Zhang J; Botella JR; Ma C; Kong F; Liu B; Zhu JK
    Mol Plant; 2019 Aug; 12(8):1047-1059. PubMed ID: 31260812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a glyphosate-resistant mutant of rice 5-enolpyruvylshikimate 3-phosphate synthase using a directed evolution strategy.
    Zhou M; Xu H; Wei X; Ye Z; Wei L; Gong W; Wang Y; Zhu Z
    Plant Physiol; 2006 Jan; 140(1):184-95. PubMed ID: 16361526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted G-to-T base editing for generation of novel herbicide-resistance gene alleles in rice.
    Tian Y; Li X; Xie J; Zheng Z; Shen R; Cao X; Wang M; Dong C; Zhu JK
    J Integr Plant Biol; 2024 Jun; 66(6):1048-1051. PubMed ID: 38578176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.