BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

931 related articles for article (PubMed ID: 32217751)

  • 1. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants.
    Walton RT; Christie KA; Whittaker MN; Kleinstiver BP
    Science; 2020 Apr; 368(6488):290-296. PubMed ID: 32217751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SpRY Cas9 Can Utilize a Variety of Protospacer Adjacent Motif Site Sequences To Edit the Candida albicans Genome.
    Evans BA; Bernstein DA
    mSphere; 2021 May; 6(3):. PubMed ID: 34011687
    [No Abstract]   [Full Text] [Related]  

  • 3. Unraveling the mechanisms of PAMless DNA interrogation by SpRY-Cas9.
    Hibshman GN; Bravo JPK; Hooper MM; Dangerfield TL; Zhang H; Finkelstein IJ; Johnson KA; Taylor DW
    Nat Commun; 2024 Apr; 15(1):3663. PubMed ID: 38688943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PAMless SpRY exhibits a preference for the seed region for efficient targeting.
    Yang C; Zhou Z; Sun X; Ju H; Yue X; Rao S; Xue C
    Cell Rep; 2024 May; 43(5):114225. PubMed ID: 38733582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The SpRY Cas9 variant release the PAM sequence constraint for genome editing in the model plant Physcomitrium patens.
    Calbry J; Goudounet G; Charlot F; Guyon-Debast A; Perroud PF; Nogué F
    Transgenic Res; 2024 Apr; 33(1-2):67-74. PubMed ID: 38573428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome editing in animals with minimal PAM CRISPR-Cas9 enzymes.
    Vicencio J; Sánchez-Bolaños C; Moreno-Sánchez I; Brena D; Vejnar CE; Kukhtar D; Ruiz-López M; Cots-Ponjoan M; Rubio A; Melero NR; Crespo-Cuadrado J; Carolis C; Pérez-Pulido AJ; Giráldez AJ; Kleinstiver BP; Cerón J; Moreno-Mateos MA
    Nat Commun; 2022 May; 13(1):2601. PubMed ID: 35552388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG.
    Zhong Z; Sretenovic S; Ren Q; Yang L; Bao Y; Qi C; Yuan M; He Y; Liu S; Liu X; Wang J; Huang L; Wang Y; Baby D; Wang D; Zhang T; Qi Y; Zhang Y
    Mol Plant; 2019 Jul; 12(7):1027-1036. PubMed ID: 30928637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition.
    Xu Z; Kuang Y; Ren B; Yan D; Yan F; Spetz C; Sun W; Wang G; Zhou X; Zhou H
    Genome Biol; 2021 Jan; 22(1):6. PubMed ID: 33397431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.
    Hu JH; Miller SM; Geurts MH; Tang W; Chen L; Sun N; Zeina CM; Gao X; Rees HA; Lin Z; Liu DR
    Nature; 2018 Apr; 556(7699):57-63. PubMed ID: 29512652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can SpRY recognize any PAM in human cells?
    Ye J; Xi H; Chen Y; Chen Q; Lu X; Lv J; Chen Y; Gu F; Zhao J
    J Zhejiang Univ Sci B; 2022 May; 23(5):382-391. PubMed ID: 35557039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PAM-less plant genome editing using a CRISPR-SpRY toolbox.
    Ren Q; Sretenovic S; Liu S; Tang X; Huang L; He Y; Liu L; Guo Y; Zhong Z; Liu G; Cheng Y; Zheng X; Pan C; Yin D; Zhang Y; Li W; Qi L; Li C; Qi Y; Zhang Y
    Nat Plants; 2021 Jan; 7(1):25-33. PubMed ID: 33398158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knock-in and precise nucleotide substitution using near-PAMless engineered Cas9 variants in Dictyostelium discoideum.
    Asano Y; Yamashita K; Hasegawa A; Ogasawara T; Iriki H; Muramoto T
    Sci Rep; 2021 May; 11(1):11163. PubMed ID: 34045481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits.
    Liu Z; Shan H; Chen S; Chen M; Song Y; Lai L; Li Z
    FASEB J; 2020 Jan; 34(1):588-596. PubMed ID: 31914687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered CRISPR-Cas9 nuclease with expanded targeting space.
    Nishimasu H; Shi X; Ishiguro S; Gao L; Hirano S; Okazaki S; Noda T; Abudayyeh OO; Gootenberg JS; Mori H; Oura S; Holmes B; Tanaka M; Seki M; Hirano H; Aburatani H; Ishitani R; Ikawa M; Yachie N; Zhang F; Nureki O
    Science; 2018 Sep; 361(6408):1259-1262. PubMed ID: 30166441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM.
    Endo M; Mikami M; Endo A; Kaya H; Itoh T; Nishimasu H; Nureki O; Toki S
    Nat Plants; 2019 Jan; 5(1):14-17. PubMed ID: 30531939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SpRY: Engineered CRISPR/Cas9 Harnesses New Genome-Editing Power.
    Zhang D; Zhang B
    Trends Genet; 2020 Aug; 36(8):546-548. PubMed ID: 32456805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells.
    Kim HK; Lee S; Kim Y; Park J; Min S; Choi JW; Huang TP; Yoon S; Liu DR; Kim HH
    Nat Biomed Eng; 2020 Jan; 4(1):111-124. PubMed ID: 31937939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous evolution of SpCas9 variants compatible with non-G PAMs.
    Miller SM; Wang T; Randolph PB; Arbab M; Shen MW; Huang TP; Matuszek Z; Newby GA; Rees HA; Liu DR
    Nat Biotechnol; 2020 Apr; 38(4):471-481. PubMed ID: 32042170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene editing of Duchenne muscular dystrophy using biomineralization-based spCas9 variant nanoparticles.
    Li S; Du M; Deng J; Deng G; Li J; Song Z; Han H
    Acta Biomater; 2022 Dec; 154():597-607. PubMed ID: 36243370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.