These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 32218267)

  • 1. A Study on the Thermal Properties of High-Strength Concrete Containing CBA Fine Aggregates.
    Yang IH; Park J
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32218267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selected Strength Properties of Coal Bottom Ash (CBA) Concrete Containing Fly Ash under Different Curing and Drying Conditions.
    Park JH; Bui QT; Jung SH; Yang IH
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strength and Permeability Properties of Pervious Concrete Containing Coal Bottom Ash Aggregates.
    Park JH; Jeong ST; Bui QT; Yang IH
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comparative Study of the Thermal Conductivities of CBA Porous Concretes.
    Jeong ST; Bui QT; Yang IH
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strength properties of concrete incorporating coal bottom ash and granulated blast furnace slag.
    Ozkan O; Yüksel I; Muratoğlu O
    Waste Manag; 2007; 27(2):161-7. PubMed ID: 16580833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating Compressive Strength of Concrete Containing Untreated Coal Waste Aggregates Using Ultrasonic Pulse Velocity.
    Karimaei M; Dabbaghi F; Dehestani M; Rashidi M
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation Analysis of Ultrasonic Pulse Velocity and Mechanical Properties of Normal Aggregate and Lightweight Aggregate Concretes in 30-60 MPa Range.
    Kim W; Jeong K; Choi H; Lee T
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Pore Structure on Thermal Conductivity and Mechanical Properties of Autoclaved Aerated Concrete.
    Chen G; Li F; Jing P; Geng J; Si Z
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33440871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties and Microstructure Distribution of High-Performance Thermal Insulation Concrete.
    Mohammad M; Masad E; Seers T; Al-Ghamdi SG
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32369971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method.
    Bogas JA; Gomes MG; Gomes A
    Ultrasonics; 2013 Jul; 53(5):962-72. PubMed ID: 23351273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of coal ash on the concrete properties and its performance under sulphate and chloride conditions.
    Mangi SA; Wan Ibrahim MH; Jamaluddin N; Arshad MF; Khahro SH; Putra Jaya R
    Environ Sci Pollut Res Int; 2021 Nov; 28(43):60787-60797. PubMed ID: 34165742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Thermal Properties of Aggregates on the Mechanical Properties of High Strength Concrete under Loading and High Temperature Conditions.
    Lee T; Jeong K; Choi H
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Mineral Aggregates and Chemical Admixtures as Internal Curing Agents on the Mechanical Properties and Durability of High-Performance Concrete.
    Vázquez-Rodríguez FJ; Elizondo-Villareal N; Verástegui LH; Tovar AMA; López-Perales JF; León JEC; Gómez-Rodríguez C; Fernández-González D; Verdeja LF; García-Quiñonez LV; Castellanos EAR
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32369963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental study on the hazard assessment and mechanical properties of porous concrete utilizing coal bottom ash coarse aggregate in Korea.
    Park SB; Jang YI; Lee J; Lee BJ
    J Hazard Mater; 2009 Jul; 166(1):348-55. PubMed ID: 19124198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Use of Ground Coal Bottom Ash/Slag as a Cement Replacement for Sustainable Concrete Infrastructure.
    Poudel S; Menda S; Useldinger-Hoefs J; Guteta LE; Dockter B; Gedafa DS
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of Strength Properties for Concrete Containing Fine-Rubber Particles Using UPV.
    Choi Y; Kim IH; Lim HJ; Cho CG
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the Role of Nano-Titanium on Corrosion and Thermal Performance of Structural Concrete with Macro-Encapsulated PCM.
    Mohseni E; Tang W; Wang S
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30959919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strength, microstructure, and thermal conductivity of the insulation wallboards prepared with rice husk fiber and recycled concrete aggregates.
    Yu X; Sun L
    PLoS One; 2018; 13(9):e0203527. PubMed ID: 30231053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Investigation on Mechanical and Thermal Properties of Concrete Using Waste Materials as an Aggregate Substitution.
    Sosoi G; Abid C; Barbuta M; Burlacu A; Balan MC; Branoaea M; Vizitiu RS; Rigollet F
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate.
    Sim J; Park C
    Waste Manag; 2011 Nov; 31(11):2352-60. PubMed ID: 21784626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.