These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 32218341)

  • 1. Special Issue: "Advances in Homogeneous Catalysis".
    García-Álvarez J
    Molecules; 2020 Mar; 25(7):. PubMed ID: 32218341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Special Issue: "Organic Reactions in Green Solvents".
    Sperry J; García-Álvarez J
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27854295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of supported acidic ionic liquids in organic synthesis.
    Skoda-Földes R
    Molecules; 2014 Jun; 19(7):8840-84. PubMed ID: 24972271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles.
    Yu J; Shi F; Gong LZ
    Acc Chem Res; 2011 Nov; 44(11):1156-71. PubMed ID: 21800828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brønsted acid ionic liquid as a solvent-conserving catalyst for organic reactions.
    Taheri A; Pan X; Liu C; Gu Y
    ChemSusChem; 2014 Aug; 7(8):2094-8. PubMed ID: 24801712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of Lipase-Catalyzed Reactions Using Ionic Liquids for Organic Synthesis.
    Itoh T
    Adv Biochem Eng Biotechnol; 2019; 168():79-104. PubMed ID: 29744541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts?
    Reetz MT
    Acc Chem Res; 2019 Feb; 52(2):336-344. PubMed ID: 30689339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.
    Park YJ; Park JW; Jun CH
    Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured catalysts for organic transformations.
    Chng LL; Erathodiyil N; Ying JY
    Acc Chem Res; 2013 Aug; 46(8):1825-37. PubMed ID: 23350747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(ethylene glycol)-based ionic liquids: properties and uses as alternative solvents in organic synthesis and catalysis.
    Cecchini MM; Charnay C; De Angelis F; Lamaty F; Martinez J; Colacino E
    ChemSusChem; 2014 Jan; 7(1):45-65. PubMed ID: 24323519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric organocatalysis combined with metal catalysis: concept, proof of concept, and beyond.
    Chen DF; Han ZY; Zhou XL; Gong LZ
    Acc Chem Res; 2014 Aug; 47(8):2365-77. PubMed ID: 24911184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transesterification catalyzed by ionic liquids on superhydrophobic mesoporous polymers: heterogeneous catalysts that are faster than homogeneous catalysts.
    Liu F; Wang L; Sun Q; Zhu L; Meng X; Xiao FS
    J Am Chem Soc; 2012 Oct; 134(41):16948-50. PubMed ID: 23009896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts.
    Yu XY; Zhao QQ; Chen J; Xiao WJ; Chen JR
    Acc Chem Res; 2020 May; 53(5):1066-1083. PubMed ID: 32286794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gallium(III)- and Indium(III)-Containing Ionic Liquids as Highly Active Catalysts in Organic Synthesis.
    Więcławik J; Chrobok A
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-valent cobalt catalysis: new opportunities for C-H functionalization.
    Gao K; Yoshikai N
    Acc Chem Res; 2014 Apr; 47(4):1208-19. PubMed ID: 24576170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Catalytic Metal-Based Homogeneous-Heterogeneous Systems in Organic Chemistry.
    Arango-Daza JC; Rivero-Crespo MA
    Chemistry; 2024 Jul; ():e202400443. PubMed ID: 38958991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of metal-based reagents and catalysts in microstructured flow devices.
    Chinnusamy T; Yudha SS; Hager M; Kreitmeier P; Reiser O
    ChemSusChem; 2012 Feb; 5(2):247-55. PubMed ID: 22275318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combinations of Aminocatalysts and Metal Catalysts: A Powerful Cooperative Approach in Selective Organic Synthesis.
    Afewerki S; Córdova A
    Chem Rev; 2016 Nov; 116(22):13512-13570. PubMed ID: 27723291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.