These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32218379)

  • 21. Improving ASR Systems for Children with Autism and Language Impairment Using Domain-Focused DNN Transfer Techniques.
    Gale R; Chen L; Dolata J; van Santen J; Asgari M
    Interspeech; 2019 Sep; 2019():11-15. PubMed ID: 33088838
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multilingual end-to-end ASR for low-resource Turkic languages with common alphabets.
    Bekarystankyzy A; Mamyrbayev O; Mendes M; Fazylzhanova A; Assam M
    Sci Rep; 2024 Jun; 14(1):13835. PubMed ID: 38879705
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acoustic landmarks contain more information about the phone string than other frames for automatic speech recognition with deep neural network acoustic model.
    He D; Lim BP; Yang X; Hasegawa-Johnson M; Chen D
    J Acoust Soc Am; 2018 Jun; 143(6):3207. PubMed ID: 29960420
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Useful blunders: Can automated speech recognition errors improve downstream dementia classification?
    Li C; Xu W; Cohen T; Pakhomov S
    J Biomed Inform; 2024 Feb; 150():104598. PubMed ID: 38253228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transfer Learning from Adult to Children for Speech Recognition: Evaluation, Analysis and Recommendations.
    Shivakumar PG; Georgiou P
    Comput Speech Lang; 2020 Sep; 63():. PubMed ID: 32372847
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retrospective Analysis of Clinical Performance of an Estonian Speech Recognition System for Radiology: Effects of Different Acoustic and Language Models.
    Paats A; Alumäe T; Meister E; Fridolin I
    J Digit Imaging; 2018 Oct; 31(5):615-621. PubMed ID: 29713836
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A study of transformer-based end-to-end speech recognition system for Kazakh language.
    Orken M; Dina O; Keylan A; Tolganay T; Mohamed O
    Sci Rep; 2022 May; 12(1):8337. PubMed ID: 35585130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiexpert automatic speech recognition using acoustic and myoelectric signals.
    Chan AD; Englehart KB; Hudgins B; Lovely DF
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):676-85. PubMed ID: 16602574
    [TBL] [Abstract][Full Text] [Related]  

  • 29. English Speech Recognition System Model Based on Computer-Aided Function and Neural Network Algorithm.
    Zhang J
    Comput Intell Neurosci; 2022; 2022():7846877. PubMed ID: 35498214
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Implementation of a System for Assessing the Quality of Spoken English Pronunciation Based on Cognitive Heuristic Computing.
    Wu Y; Zheng C; Hao M; Wang L
    Comput Intell Neurosci; 2022; 2022():5239375. PubMed ID: 35845915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fully Automatic Brain Tumor Segmentation using End-To-End Incremental Deep Neural Networks in MRI images.
    Naceur MB; Saouli R; Akil M; Kachouri R
    Comput Methods Programs Biomed; 2018 Nov; 166():39-49. PubMed ID: 30415717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture.
    Attia M; Hossny M; Zhou H; Nahavandi S; Asadi H; Yazdabadi A
    Comput Methods Programs Biomed; 2019 Aug; 177():17-30. PubMed ID: 31319945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptation to New Microphones Using Artificial Neural Networks With Trainable Activation Functions.
    Siniscalchi SM; Salerno VM
    IEEE Trans Neural Netw Learn Syst; 2017 Aug; 28(8):1959-1965. PubMed ID: 27101623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. End-to-End Lip-Reading Open Cloud-Based Speech Architecture.
    Jeon S; Kim MS
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spoofing Detection in Automatic Speaker Verification Systems Using DNN Classifiers and Dynamic Acoustic Features.
    Yu H; Tan ZH; Ma Z; Martin R; Guo J
    IEEE Trans Neural Netw Learn Syst; 2018 Oct; 29(10):4633-4644. PubMed ID: 29990208
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic Speech Recognition of Conversational Speech in Individuals With Disordered Speech.
    Tobin J; Nelson P; MacDonald B; Heywood R; Cave R; Seaver K; Desjardins A; Jiang PP; Green JR
    J Speech Lang Hear Res; 2024 Jul; ():1-10. PubMed ID: 38963790
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A transfer learning approach to goodness of pronunciation based automatic mispronunciation detection.
    Huang H; Xu H; Hu Y; Zhou G
    J Acoust Soc Am; 2017 Nov; 142(5):3165. PubMed ID: 29195422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic Assessment of Speech Impairment in Cantonese-speaking People with Aphasia.
    Qin Y; Lee T; Kong APH
    IEEE J Sel Top Signal Process; 2020 Feb; 14(2):331-345. PubMed ID: 32499841
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complete and Resilient Documentation for Operational Medical Environments Leveraging Mobile Hands-free Technology in a Systems Approach: Experimental Study.
    Woo M; Mishra P; Lin J; Kar S; Deas N; Linduff C; Niu S; Yang Y; McClendon J; Smith DH; Shelton SL; Gainey CE; Gerard WC; Smith MC; Griffin SF; Gimbel RW; Wang KC
    JMIR Mhealth Uhealth; 2021 Oct; 9(10):e32301. PubMed ID: 34636729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep neural network-based generalized sidelobe canceller for dual-channel far-field speech recognition.
    Li G; Liang S; Nie S; Liu W; Yang Z
    Neural Netw; 2021 Sep; 141():225-237. PubMed ID: 33930564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.