BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32218449)

  • 21. Describing Vocalizations in Young Children: A Big Data Approach Through Citizen Science Annotation.
    Semenzin C; Hamrick L; Seidl A; Kelleher BL; Cristia A
    J Speech Lang Hear Res; 2021 Jul; 64(7):2401-2416. PubMed ID: 34098723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Citizen science frontiers: Efficiency, engagement, and serendipitous discovery with human-machine systems.
    Trouille L; Lintott CJ; Fortson LF
    Proc Natl Acad Sci U S A; 2019 Feb; 116(6):1902-1909. PubMed ID: 30718393
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Camera settings and biome influence the accuracy of citizen science approaches to camera trap image classification.
    Egna N; O'Connor D; Stacy-Dawes J; Tobler MW; Pilfold N; Neilson K; Simmons B; Davis EO; Bowler M; Fennessy J; Glikman JA; Larpei L; Lekalgitele J; Lekupanai R; Lekushan J; Lemingani L; Lemirgishan J; Lenaipa D; Lenyakopiro J; Lesipiti RL; Lororua M; Muneza A; Rabhayo S; Ole Ranah SM; Ruppert K; Owen M
    Ecol Evol; 2020 Nov; 10(21):11954-11965. PubMed ID: 33209262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bangladeshi medicinal plant dataset.
    Borkatulla B; Ferdous J; Uddin AH; Mahmud P
    Data Brief; 2023 Jun; 48():109211. PubMed ID: 37383807
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Citizen science: A new perspective to advance spatial pattern evaluation in hydrology.
    Koch J; Stisen S
    PLoS One; 2017; 12(5):e0178165. PubMed ID: 28558050
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A cell-level quality control workflow for high-throughput image analysis.
    Qiu M; Zhou B; Lo F; Cook S; Chyba J; Quackenbush D; Matzen J; Li Z; Mak PA; Chen K; Zhou Y
    BMC Bioinformatics; 2020 Jul; 21(1):280. PubMed ID: 32615917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Passive citizen science: The role of social media in wildlife observations.
    Edwards T; Jones CB; Perkins SE; Corcoran P
    PLoS One; 2021; 16(8):e0255416. PubMed ID: 34407145
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Segmenting functional tissue units across human organs using community-driven development of generalizable machine learning algorithms.
    Jain Y; Godwin LL; Joshi S; Mandarapu S; Le T; Lindskog C; Lundberg E; Börner K
    Nat Commun; 2023 Aug; 14(1):4656. PubMed ID: 37537179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison and optimization of machine learning methods for automated classification of circulating tumor cells.
    Lannin TB; Thege FI; Kirby BJ
    Cytometry A; 2016 Oct; 89(10):922-931. PubMed ID: 27754580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unmanned aerial vehicle images in the machine learning for agave detection.
    Escobar-Flores JG; Sandoval S; Gámiz-Romero E
    Environ Sci Pollut Res Int; 2022 Sep; 29(41):61662-61673. PubMed ID: 35112260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine Learning and Computer Vision System for Phenotype Data Acquisition and Analysis in Plants.
    Navarro PJ; Pérez F; Weiss J; Egea-Cortines M
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27164103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Embryo development stage prediction algorithm for automated time lapse incubators.
    Dirvanauskas D; Maskeliunas R; Raudonis V; Damasevicius R
    Comput Methods Programs Biomed; 2019 Aug; 177():161-174. PubMed ID: 31319944
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-lapse imagery of Adélie penguins reveals differential winter strategies and breeding site occupation.
    Black C; Southwell C; Emmerson L; Lunn D; Hart T
    PLoS One; 2018; 13(3):e0193532. PubMed ID: 29561876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using Convolutional Neural Networks to Efficiently Extract Immense Phenological Data From Community Science Images.
    Reeb RA; Aziz N; Lapp SM; Kitzes J; Heberling JM; Kuebbing SE
    Front Plant Sci; 2021; 12():787407. PubMed ID: 35111176
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and Implementation of a UAV-Based Airborne Computing Platform for Computer Vision and Machine Learning Applications.
    Douklias A; Karagiannidis L; Misichroni F; Amditis A
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Usability of deep learning pipelines for 3D nuclei identification with Stardist and Cellpose.
    Kleinberg G; Wang S; Comellas E; Monaghan JR; Shefelbine SJ
    Cells Dev; 2022 Dec; 172():203806. PubMed ID: 36029974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CytoCensus, mapping cell identity and division in tissues and organs using machine learning.
    Hailstone M; Waithe D; Samuels TJ; Yang L; Costello I; Arava Y; Robertson E; Parton RM; Davis I
    Elife; 2020 May; 9():. PubMed ID: 32423529
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using human brain activity to guide machine learning.
    Fong RC; Scheirer WJ; Cox DD
    Sci Rep; 2018 Mar; 8(1):5397. PubMed ID: 29599461
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MAIA-A machine learning assisted image annotation method for environmental monitoring and exploration.
    Zurowietz M; Langenkämper D; Hosking B; Ruhl HA; Nattkemper TW
    PLoS One; 2018; 13(11):e0207498. PubMed ID: 30444917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using computer vision, image analysis and UAVs for the automatic recognition and counting of common cranes (Grus grus).
    Chen A; Jacob M; Shoshani G; Charter M
    J Environ Manage; 2023 Feb; 328():116948. PubMed ID: 36516707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.